(Dec 2025). A New Shifted Chebyshev Galerkin Operational Matrix of Derivatives: Highly Accurate Method for a Nonlinear Singularly Perturbed Problem with an Integral Boundary Condition. Journal of Nonlinear Mathematical Physics. https://doi.org/10.1007/s44198-025-00295-4
Met succes gekopieerd naar Clipboard
Kopiëren naar Clipboard is mislukt
Chicago (17e ed.) Bronvermelding
"A New Shifted Chebyshev Galerkin Operational Matrix of Derivatives: Highly Accurate Method for a Nonlinear Singularly Perturbed Problem with an Integral Boundary Condition."
Journal of Nonlinear Mathematical Physics Dec 2025. https://doi.org/10.1007/s44198-025-00295-4.
Met succes gekopieerd naar Clipboard
Kopiëren naar Clipboard is mislukt
MLA (9e ed.) Bronvermelding
"A New Shifted Chebyshev Galerkin Operational Matrix of Derivatives: Highly Accurate Method for a Nonlinear Singularly Perturbed Problem with an Integral Boundary Condition."
Journal of Nonlinear Mathematical Physics, Dec 2025, https://doi.org/10.1007/s44198-025-00295-4.
Met succes gekopieerd naar Clipboard
Kopiëren naar Clipboard is mislukt
Let op: Deze citaties zijn niet altijd 100% accuraat.