Ohcanbohtosat - Decision making Computer programs
Fáddáevttohusat
Fáddáevttohusat
- Computer programs 2 [guođe eret]
- Nonprofit organizations 2 [guođe eret]
- Artificial intelligence 1 [guođe eret]
- Automatic tracking 1 [guođe eret]
- Bayesian statistical decision theory 1 [guođe eret]
- Branding (Marketing) 1 [guođe eret]
- Civil service ethics 1 [guođe eret]
- Customer loyalty 1 [guođe eret]
- Decision making 1 [guođe eret]
- Emergency nursing 1 [guođe eret]
- Emergency reporting systems 1 [guođe eret]
- Estimation theory 1 [guođe eret]
- Finance 1 [guođe eret]
- Investment analysis 1 [guođe eret]
- Investments 1 [guođe eret]
- Management 1 [guođe eret]
- Mathematical models 1 [guođe eret]
- Mathematics 1 [guođe eret]
- Multiple criteria decision making 1 [guođe eret]
- Neonatology 1 [guođe eret]
- Portfolio management 1 [guođe eret]
- Project management 1 [guođe eret]
- Public administration 1 [guođe eret]
- Relationship marketing 1 [guođe eret]
- Social networks 1 [guođe eret]
- Telephone 1 [guođe eret]
- Triage (Medicine) 1 [guođe eret]
- Word-of-mouth advertising 1 [guođe eret]
-
Making effective business decisions using Microsoft Project /
Almmustuhtton 2013.Viečča ollesdeavstta
Čájet áššehaslávttas
Elektrovnnalaš E-girji -
Investment portfolio selection using goal programming : an approach to making investment decisions /
Almmustuhtton 2013.Viečča ollesdeavstta
Čájet áššehaslávttas
Elektrovnnalaš E-girji -
Multicriteria decision aid and artificial intelligence : links, theory and applications /
Almmustuhtton 2013.Sisdoallologahallan: “…Machine generated contents note: List of Contributors Preface Part One The Contributions of Intelligent Techniques in Multicriteria Decision Aiding 1 Computational Intelligence Techniques for Multicriteria Decision Aiding: An Overview 1.1 Introduction 1.2 The MCDA Paradigm 1.2.1 Modeling Process 1.2.2 Methodological Approaches 1.3 Computational Intelligence in MCDA 1.3.1 Statistical Learning and Data Mining 1.3.2 Fuzzy Modeling 1.3.3 Metaheuristics 1.4 Conclusions References 2 Intelligent Decision Support Systems 2.1 Introduction 2.2 Fundamentals of Human Decision Making 2.3 Decision Support System 2.4 Intelligent Decision Support Systems 2.4.1 Artificial Neural Networks for Intelligent Decision Support 2.4.2 Fuzzy Logic for Intelligent Decision Support 2.4.3 Expert Systems for Intelligent Decision Support 2.4.4 Evolutionary Computing for Intelligent Decision Support 2.4.5 Intelligent Agents for Intelligent Decision Support 2.5 Evaluating Intelligent Decision Support Systems 2.5.1 Determining Evaluation Criteria 2.5.2 Multi-Criteria Model for IDSS Assessment 2.6 Summary and Future Trends References Part Two Intelligent Technologies for Decision Support and Preference Modeling 3 Designing Distributed Multi-Criteria Decision Support Systems for Complex and Uncertain Situations 3.1 Introduction 3.2 Example Applications 3.3 Key Challenges 3.4 Making Trade-offs: Multi-criteria Decision Analysis 3.4.1 Multi-attribute Decision Support 3.4.2 Making Trade-offs Under Uncertainty 3.5 Exploring the Future: Scenario-based Reasoning 3.6 Making Robust Decisions: Combining MCDA and SBR 3.6.1 Decisions Under Uncertainty: The Concept of Robustness 3.6.2 Combining Scenarios and MCDA 3.6.3 Collecting, Sharing and Processing Information: A Distributed Approach 3.6.4 Keeping Track of Future Developments: Constructing Comparable Scenarios 3.6.5 Respecting Constraints and Requirements: Scenario Management 3.6.6 Assisting Evaluation: Assessing Large Numbers of Scenarios 3.7 Discussion 3.8 Conclusion References 4 Preference Representation with Ontologies 4.1 Introduction 4.1.1 Structure of the Chapter 4.2 Ontology-based Preference Models 4.3 Maintaining the User's Profile up to Date 4.4 Decision Making Methods Exploiting the Preference Information Stored in Ontologies 4.4.1 Recommendation Based on Aggregation 4.4.2 Recommendation Based on Similarities 4.4.3 Recommendation Based on Rules 4.5 Discussion and Open Questions References Part Three Decision Models 5 Neural Networks in Multicriteria Decision Support 5.1 Introduction 5.2 Basic Concepts of Neural Networks 5.2.1 Neural Networks for Intelligent Decision Support 5.3 Basics in Multicriteria Decision Aid 5.3.1 MCDM Problems 5.3.2 Solutions of MCDM Problems 5.4 Neural Networks and Multicriteria Decision Support 5.4.1 Review of Neural Network Applications to MCDM Problems 5.4.2 Discussion 5.5 Summary and Conclusions References 6 Rule-Based Approach to Multicriteria Ranking 6.1 Introduction 6.2 Problem Setting 6.3 Pairwise Comparison Table (PCT) 6.4 Rough Approximation of Outranking and Non-outranking Relations 6.5 Induction and Application of Decision Rules 6.6 Exploitation of Preference Graphs 6.7 Illustrative Example 6.8 Summary and Conclusions References 7 About the Application of Evidence Theory in MultiCriteria Decision Aid 7.1 Introduction 7.2 Evidence Theory: Some Concepts 7.2.1 Knowledge Model 7.2.2 Combination 7.2.3 Decision Making 7.3 New Concepts in Evidence Theory for MCDA 7.3.1 First Belief Dominance 7.3.2 RBBD Concept 7.4 Multicriteria Methods modeled by Evidence Theory 7.4.1 Evidential Reasoning Approach 7.4.2 DS/AHP 7.4.3 DISSET 7.4.4 A Choice Model Inspired by ELECTRE I 7.4.5 A Ranking Model Inspired by Xu et al.'…”
Viečča ollesdeavstta
Čájet áššehaslávttas
Elektrovnnalaš E-girji -
Financial simulation modeling in Excel : a step-by-step guide /
Almmustuhtton [2011]Viečča ollesdeavstta
Čájet áššehaslávttas
Elektrovnnalaš E-girji -
Bayesian estimation and tracking : a practical guide /
Almmustuhtton 2012.Viečča ollesdeavstta
Čájet áššehaslávttas
Elektrovnnalaš E-girji -
The ethics challenge in public service : a problem-solving guide /
Almmustuhtton 2012.Viečča ollesdeavstta
Čájet áššehaslávttas
Elektrovnnalaš E-girji -
The next public administration : debates & dilemmas /
Almmustuhtton 2018.Viečča ollesdeavstta
Čájet áššehaslávttas
Elektrovnnalaš E-girji -
Measuring the networked nonprofit : using data to change the world /
Almmustuhtton 2012.Viečča ollesdeavstta
Čájet áššehaslávttas
Elektrovnnalaš E-girji -
Managing nonprofit organizations /
Almmustuhtton 2012.Viečča ollesdeavstta
Čájet áššehaslávttas
Elektrovnnalaš E-girji -
Manual of neonatal care /
Almmustuhtton [2012]Viečča ollesdeavstta
Čájet áššehaslávttas
Elektrovnnalaš E-girji -
Brand advocates : turning enthusiastic customers into a powerful marketing force /
Almmustuhtton 2012.Viečča ollesdeavstta
Čájet áššehaslávttas
Elektrovnnalaš E-girji -
Sistema informático en ambiente web para la administración de proyectos, con módulo geográfico para la Fundación Salvadoreña para el Desarrollo Económico y Social, FUSADES.
Almmustuhtton 2024“…In addition to, this Web-Based Computer System is going to be meaningful andhelpful for Fortassince its members are going to be able to take control of the registration processes, aunthentifications and inquiries for decisions making. …”
Viečča ollesdeavstta
Oahppočájánas -
Telephone triage protocols for nurses /
Almmustuhtton [2012]Viečča ollesdeavstta
Čájet áššehaslávttas
Elektrovnnalaš E-girji