SOM-based recommendations with privacy on multi-party vertically distributed data

Збережено в:
Бібліографічні деталі
Опубліковано в::The Journal of the Operational Research Society vol. 63, no. 6 (Jun 2012), p. 826-838
Автор: Kaleli, C
Інші автори: Polat, H
Опубліковано:
Taylor & Francis Ltd.
Предмети:
Онлайн доступ:Citation/Abstract
Full Text
Full Text - PDF
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!

MARC

LEADER 00000nab a2200000uu 4500
001 1011491966
003 UK-CbPIL
022 |a 0160-5682 
022 |a 1476-9360 
022 |a 0030-3623 
024 7 |a 10.1057/jors.2011.76  |2 doi 
035 |a 1011491966 
045 2 |b d20120601  |b d20120630 
084 |a 12717  |2 nlm 
100 1 |a Kaleli, C 
245 1 |a SOM-based recommendations with privacy on multi-party vertically distributed data 
260 |b Taylor & Francis Ltd.  |c Jun 2012 
513 |a Feature 
520 3 |a Data collected for providing recommendations can be partitioned among different parties. Offering distributed data-based predictions is popular due to mutual advantages. It is almost impossible to present trustworthy referrals with decent accuracy from split data only. Meaningful outcomes can be drawn from adequate data. Those companies with distributed data might want to collaborate to produce accurate and dependable recommendations to their customers. However, they hesitate to work together or refuse to collaborate because of privacy, financial concerns, and legal issues. If privacy-preserving measures are provided, such data holders might decide to collaborate for better predictions. In this study, we investigate how to provide predictions based on vertically distributed data (VDD) among multiple parties without deeply jeopardizing their confidentiality. Users are first grouped into various clusters off-line using self-organizing map clustering while protecting the online vendors' privacy. With privacy concerns, recommendations are produced based on partitioned data using a nearest neighbour prediction algorithm. We analyse our privacy-preserving scheme in terms of confidentiality and supplementary costs. Our analysis shows that our method offers recommendations without greatly exposing data holders' privacy and causes negligible superfluous costs because of privacy concerns. To evaluate the scheme in terms of accuracy, we perform real-data-based experiments. Our experiment results demonstrate that the scheme is still able to provide truthful predictions. [PUBLICATION ABSTRACT] 
653 |a Studies 
653 |a Distributed processing 
653 |a Privacy 
653 |a Electronic commerce 
653 |a Customers 
653 |a Data mining 
653 |a Principal components analysis 
653 |a Internet 
653 |a Collaboration 
653 |a Data smoothing 
653 |a Algorithms 
653 |a Clustering 
653 |a Ratings & rankings 
653 |a Peer to peer computing 
653 |a Operations research 
700 1 |a Polat, H 
773 0 |t The Journal of the Operational Research Society  |g vol. 63, no. 6 (Jun 2012), p. 826-838 
786 0 |d ProQuest  |t ABI/INFORM Global 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/1011491966/abstract/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/1011491966/fulltext/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/1011491966/fulltextPDF/embedded/6A8EOT78XXH2IG52?source=fedsrch