Design and analysis issues in gene and environment studies

Uloženo v:
Podrobná bibliografie
Vydáno v:Environmental Health vol. 11 (2012), p. n/a
Hlavní autor: Liu, Chen-yu
Další autoři: Maity, Arnab, Lin, Xihong, Wright, Robert O, Christiani, David C
Vydáno:
Springer Nature B.V.
Témata:
On-line přístup:Citation/Abstract
Full Text
Full Text - PDF
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!

MARC

LEADER 00000nab a2200000uu 4500
001 1271860053
003 UK-CbPIL
022 |a 1476-069X 
024 7 |a 10.1186/1476-069X-11-93  |2 doi 
035 |a 1271860053 
045 2 |b d20120101  |b d20121231 
084 |a 23253229 
084 |a 58366  |2 nlm 
100 1 |a Liu, Chen-yu 
245 1 |a Design and analysis issues in gene and environment studies 
260 |b Springer Nature B.V.  |c 2012 
513 |a Journal Article 
520 3 |a Doc number: 93 Abstract: Both nurture (environmental) and nature (genetic factors) play an important role in human disease etiology. Traditionally, these effects have been thought of as independent. This perspective is ill informed for non-mendelian complex disorders which result as an interaction between genetics and environment. To understand health and disease we must study how nature and nurture interact. Recent advances in human genomics and high-throughput biotechnology make it possible to study large numbers of genetic markers and gene products simultaneously to explore their interactions with environment. The purpose of this review is to discuss design and analytic issues for gene-environment interaction studies in the "-omics" era, with a focus on environmental and genetic epidemiological studies. We present an expanded environmental genomic disease paradigm. We discuss several study design issues for gene-environmental interaction studies, including confounding and selection bias, measurement of exposures and genotypes. We discuss statistical issues in studying gene-environment interactions in different study designs, such as choices of statistical models, assumptions regarding biological factors, and power and sample size considerations, especially in genome-wide gene-environment studies. Future research directions are also discussed.   Both nurture (environmental) and nature (genetic factors) play an important role in human disease etiology. Traditionally, these effects have been thought of as independent. This perspective is ill informed for non-mendelian complex disorders which result as an interaction between genetics and environment. To understand health and disease we must study how nature and nurture interact. Recent advances in human genomics and high-throughput biotechnology make it possible to study large numbers of genetic markers and gene products simultaneously to explore their interactions with environment. The purpose of this review is to discuss design and analytic issues for gene-environment interaction studies in the "-omics" era, with a focus on environmental and genetic epidemiological studies. We present an expanded environmental genomic disease paradigm. We discuss several study design issues for gene-environmental interaction studies, including confounding and selection bias, measurement of exposures and genotypes. We discuss statistical issues in studying gene-environment interactions in different study designs, such as choices of statistical models, assumptions regarding biological factors, and power and sample size considerations, especially in genome-wide gene-environment studies. Future research directions are also discussed. 
610 4 |a Harvard School of Public Health 
650 2 2 |a Confounding Factors (Epidemiology) 
650 2 2 |a Environmental Exposure 
650 1 2 |a Epidemiologic Research Design 
650 2 2 |a Epidemiologic Studies 
650 2 2 |a Epigenesis, Genetic 
650 1 2 |a Gene-Environment Interaction 
650 2 2 |a Humans 
650 2 2 |a Selection Bias 
653 |a Studies 
653 |a Epigenetics 
653 |a Genetics 
653 |a Public health 
653 |a Statistical methods 
653 |a Disease 
653 |a Genomics 
653 |a Drug dosages 
653 |a DNA methylation 
653 |a Biomarkers 
653 |a Epidemiology 
653 |a Health care 
653 |a Preventive medicine 
653 |a Gene expression 
653 |a Environmental health 
653 |a Health sciences 
653 |a Genotype-environment interactions 
653 |a Statistical models 
653 |a Design 
653 |a Genotypes 
653 |a Genetic factors 
653 |a Biotechnology 
653 |a Genetic markers 
653 |a Social 
700 1 |a Maity, Arnab 
700 1 |a Lin, Xihong 
700 1 |a Wright, Robert O 
700 1 |a Christiani, David C 
773 0 |t Environmental Health  |g vol. 11 (2012), p. n/a 
786 0 |d ProQuest  |t Health & Medical Collection 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/1271860053/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/1271860053/fulltext/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/1271860053/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch