Aggregate Queries in Wireless Sensor Networks

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International Journal of Distributed Sensor Networks (2012), p. n/a
1. Verfasser: Jeong-Joon, Kim
Weitere Verfasser: Shin, In-Su, Yan-Sheng, Zhang, Dong-Oh, Kim, Han, Ki-Joon
Veröffentlicht:
John Wiley & Sons, Inc.
Schlagworte:
Online-Zugang:Citation/Abstract
Full Text
Full Text - PDF
Tags: Tag hinzufügen
Keine Tags, Fügen Sie das erste Tag hinzu!

MARC

LEADER 00000nab a2200000uu 4500
001 1282121199
003 UK-CbPIL
022 |a 1550-1329 
022 |a 1550-1477 
024 7 |a 10.1155/2012/625798  |2 doi 
035 |a 1282121199 
045 2 |b d20120101  |b d20121231 
084 |a 169240  |2 nlm 
100 1 |a Jeong-Joon, Kim 
245 1 |a Aggregate Queries in Wireless Sensor Networks 
260 |b John Wiley & Sons, Inc.  |c 2012 
513 |a Journal Article 
520 3 |a   Recently as efficient processing of aggregate queries for fetching desired data from sensors has been recognized as a crucial part, in-network aggregate query processing techniques are studied intensively in wireless sensor networks. Existing representative in-network aggregate query processing techniques propose routing algorithms and data structures for processing aggregate queries. However, these aggregate query processing techniques have problems such as high energy consumption in sensor nodes, low accuracy of query processing results, and long query processing time. In order to solve these problems and to enhance the efficiency of aggregate query processing in wireless sensor networks, this paper proposes Bucket-based Parallel Aggregation (BPA). BPA divides a query region into several cells according to the distribution of sensor nodes and builds a quadtree, and then processes aggregate queries in parallel for each cell region according to routing. It sends data in duplicate by removing redundant data, which, in turn, enhances the accuracy of query processing results. Also, BPA uses a bucket-based data structure in aggregate query processing, and divides and conquers the bucket data structure adaptively according to the number of data in the bucket. In addition, BPA compresses data in order to reduce the size of data in the bucket and performs data transmission filtering when each sensor node sends data. Finally, in this paper, we prove its superiority through various experiments using sensor data. 
653 |a Studies 
653 |a Servers 
653 |a Product introduction 
653 |a Accuracy 
653 |a Wireless networks 
653 |a Data integrity 
653 |a Cloud computing 
700 1 |a Shin, In-Su 
700 1 |a Yan-Sheng, Zhang 
700 1 |a Dong-Oh, Kim 
700 1 |a Han, Ki-Joon 
773 0 |t International Journal of Distributed Sensor Networks  |g (2012), p. n/a 
786 0 |d ProQuest  |t Advanced Technologies & Aerospace Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/1282121199/abstract/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/1282121199/fulltext/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/1282121199/fulltextPDF/embedded/6A8EOT78XXH2IG52?source=fedsrch