Optimal In Silico Target Gene Deletion through Nonlinear Programming for Genetic Engineering

Na minha lista:
Detalhes bibliográficos
Publicado no:PLoS One vol. 5, no. 2 (Feb 2010), p. e9331
Autor principal: Chung-Chien, Hong
Outros Autores: Song, Mingzhou
Publicado em:
Public Library of Science
Assuntos:
Acesso em linha:Citation/Abstract
Full Text
Full Text - PDF
Tags: Adicionar Tag
Sem tags, seja o primeiro a adicionar uma tag!

MARC

LEADER 00000nab a2200000uu 4500
001 1289259083
003 UK-CbPIL
022 |a 1932-6203 
024 7 |a 10.1371/journal.pone.0009331  |2 doi 
035 |a 1289259083 
045 2 |b d20100201  |b d20100228 
084 |a 174835  |2 nlm 
100 1 |a Chung-Chien, Hong 
245 1 |a Optimal In Silico Target Gene Deletion through Nonlinear Programming for Genetic Engineering 
260 |b Public Library of Science  |c Feb 2010 
513 |a Journal Article 
520 3 |a Background Optimal selection of multiple regulatory genes, known as targets, for deletion to enhance or suppress the activities of downstream genes or metabolites is an important problem in genetic engineering. Such problems become more feasible to address in silico due to the availability of more realistic dynamical system models of gene regulatory and metabolic networks. The goal of the computational problem is to search for a subset of genes to knock out so that the activity of a downstream gene or a metabolite is optimized. Methodology/Principal Findings Based on discrete dynamical system modeling of gene regulatory networks, an integer programming problem is formulated for the optimal in silico target gene deletion problem. In the first result, the integer programming problem is proved to be NP-hard and equivalent to a nonlinear programming problem. In the second result, a heuristic algorithm, called GKONP, is designed to approximate the optimal solution, involving an approach to prune insignificant terms in the objective function, and the parallel differential evolution algorithm. In the third result, the effectiveness of the GKONP algorithm is demonstrated by applying it to a discrete dynamical system model of the yeast pheromone pathways. The empirical accuracy and time efficiency are assessed in comparison to an optimal, but exhaustive search strategy. Significance Although the in silico target gene deletion problem has enormous potential applications in genetic engineering, one must overcome the computational challenge due to its NP-hardness. The presented solution, which has been demonstrated to approximate the optimal solution in a practical amount of time, is among the few that address the computational challenge. In the experiment on the yeast pheromone pathways, the identified best subset of genes for deletion showed advantage over genes that were selected empirically. Once validated in vivo, the optimal target genes are expected to achieve higher genetic engineering effectiveness than a trial-and-error procedure. 
610 4 |a New Mexico State University 
651 4 |a New Mexico 
651 4 |a United States--US 
653 |a Integer programming 
653 |a Computation 
653 |a Pheromones 
653 |a Computer science 
653 |a Bioinformatics 
653 |a Gene deletion 
653 |a Genes 
653 |a Genetic engineering 
653 |a Biology 
653 |a Computer applications 
653 |a Metabolites 
653 |a Metabolism 
653 |a Dynamical systems 
653 |a Kinases 
653 |a Nonlinear programming 
653 |a Cell cycle 
653 |a Heuristic methods 
653 |a Evolutionary algorithms 
653 |a Proteins 
653 |a Signal transduction 
653 |a Phosphatase 
653 |a Cellulose 
653 |a Objective function 
653 |a Linear programming 
653 |a Algorithms 
653 |a Metabolic networks 
653 |a Saccharomyces cerevisiae 
653 |a Environmental 
653 |a Baking yeast 
653 |a Yeast 
700 1 |a Song, Mingzhou 
773 0 |t PLoS One  |g vol. 5, no. 2 (Feb 2010), p. e9331 
786 0 |d ProQuest  |t Health & Medical Collection 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/1289259083/abstract/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/1289259083/fulltext/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/1289259083/fulltextPDF/embedded/L8HZQI7Z43R0LA5T?source=fedsrch