PSPP: A Protein Structure Prediction Pipeline for Computing Clusters

保存先:
書誌詳細
出版年:PLoS One vol. 4, no. 7 (Jul 2009), p. e6254
第一著者: Lee, Michael S
その他の著者: Bondugula, Rajkumar, Desai, Valmik, Zavaljevski, Nela, Yeh, In-Chul, Wallqvist, Anders, Reifman, Jaques
出版事項:
Public Library of Science
主題:
オンライン・アクセス:Citation/Abstract
Full Text
Full Text - PDF
タグ: タグ追加
タグなし, このレコードへの初めてのタグを付けませんか!

MARC

LEADER 00000nab a2200000uu 4500
001 1291069843
003 UK-CbPIL
022 |a 1932-6203 
024 7 |a 10.1371/journal.pone.0006254  |2 doi 
035 |a 1291069843 
045 2 |b d20090701  |b d20090731 
084 |a 174835  |2 nlm 
100 1 |a Lee, Michael S 
245 1 |a PSPP: A Protein Structure Prediction Pipeline for Computing Clusters 
260 |b Public Library of Science  |c Jul 2009 
513 |a Journal Article 
520 3 |a Background Protein structures are critical for understanding the mechanisms of biological systems and, subsequently, for drug and vaccine design. Unfortunately, protein sequence data exceed structural data by a factor of more than 200 to 1. This gap can be partially filled by using computational protein structure prediction. While structure prediction Web servers are a notable option, they often restrict the number of sequence queries and/or provide a limited set of prediction methodologies. Therefore, we present a standalone protein structure prediction software package suitable for high-throughput structural genomic applications that performs all three classes of prediction methodologies: comparative modeling, fold recognition, and ab initio. This software can be deployed on a user's own high-performance computing cluster. Methodology/Principal Findings The pipeline consists of a Perl core that integrates more than 20 individual software packages and databases, most of which are freely available from other research laboratories. The query protein sequences are first divided into domains either by domain boundary recognition or Bayesian statistics. The structures of the individual domains are then predicted using template-based modeling or ab initio modeling. The predicted models are scored with a statistical potential and an all-atom force field. The top-scoring ab initio models are annotated by structural comparison against the Structural Classification of Proteins (SCOP) fold database. Furthermore, secondary structure, solvent accessibility, transmembrane helices, and structural disorder are predicted. The results are generated in text, tab-delimited, and hypertext markup language (HTML) formats. So far, the pipeline has been used to study viral and bacterial proteomes. Conclusions The standalone pipeline that we introduce here, unlike protein structure prediction Web servers, allows users to devote their own computing assets to process a potentially unlimited number of queries as well as perform resource-intensive ab initio structure prediction. 
610 4 |a Department of the Army 
651 4 |a Maryland 
651 4 |a United States--US 
653 |a Databases 
653 |a Computation 
653 |a Acids 
653 |a Secondary structure 
653 |a Telemedicine 
653 |a Ontology 
653 |a Open source software 
653 |a Software 
653 |a Amino acid sequence 
653 |a Laboratories 
653 |a Genomes 
653 |a Computer applications 
653 |a Statistical analysis 
653 |a Genes 
653 |a Drug development 
653 |a Software packages 
653 |a Armed forces 
653 |a Bacteria 
653 |a Proteins 
653 |a Helices 
653 |a Research methodology 
653 |a Computer programs 
653 |a Bayesian analysis 
653 |a Recognition 
653 |a Medical research 
653 |a Ebolavirus 
653 |a Social 
653 |a Viruses 
653 |a Mathematical models 
653 |a Ebola virus 
653 |a Protein structure 
653 |a Predictions 
653 |a Hypertext 
653 |a Biotechnology 
653 |a HyperText Markup Language 
653 |a Query processing 
653 |a Proteomics 
653 |a Perl 
653 |a Servers 
700 1 |a Bondugula, Rajkumar 
700 1 |a Desai, Valmik 
700 1 |a Zavaljevski, Nela 
700 1 |a Yeh, In-Chul 
700 1 |a Wallqvist, Anders 
700 1 |a Reifman, Jaques 
773 0 |t PLoS One  |g vol. 4, no. 7 (Jul 2009), p. e6254 
786 0 |d ProQuest  |t Health & Medical Collection 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/1291069843/abstract/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/1291069843/fulltext/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/1291069843/fulltextPDF/embedded/L8HZQI7Z43R0LA5T?source=fedsrch