Automatically Generated Algorithms for the Vertex Coloring Problem

Guardado en:
Detalles Bibliográficos
Publicado en:PLoS One vol. 8, no. 3 (Mar 2013), p. e58551
Autor principal: Carlos Contreras Bolton
Otros Autores: Gatica, Gustavo, Parada, Víctor
Publicado:
Public Library of Science
Materias:
Acceso en línea:Citation/Abstract
Full Text
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 1330898270
003 UK-CbPIL
022 |a 1932-6203 
024 7 |a 10.1371/journal.pone.0058551  |2 doi 
035 |a 1330898270 
045 2 |b d20130301  |b d20130331 
084 |a 174835  |2 nlm 
100 1 |a Carlos Contreras Bolton 
245 1 |a Automatically Generated Algorithms for the Vertex Coloring Problem 
260 |b Public Library of Science  |c Mar 2013 
513 |a Journal Article 
520 3 |a The vertex coloring problem is a classical problem in combinatorial optimization that consists of assigning a color to each vertex of a graph such that no adjacent vertices share the same color, minimizing the number of colors used. Despite the various practical applications that exist for this problem, its NP-hardness still represents a computational challenge. Some of the best computational results obtained for this problem are consequences of hybridizing the various known heuristics. Automatically revising the space constituted by combining these techniques to find the most adequate combination has received less attention. In this paper, we propose exploring the heuristics space for the vertex coloring problem using evolutionary algorithms. We automatically generate three new algorithms by combining elementary heuristics. To evaluate the new algorithms, a computational experiment was performed that allowed comparing them numerically with existing heuristics. The obtained algorithms present an average 29.97% relative error, while four other heuristics selected from the literature present a 59.73% error, considering 29 of the more difficult instances in the DIMACS benchmark. 
610 4 |a Kluwer Academic Publishers 
651 4 |a New York 
651 4 |a Chile 
651 4 |a United States--US 
653 |a Hybridization 
653 |a Integer programming 
653 |a Computation 
653 |a Computer science 
653 |a Algorithms 
653 |a Combinatorial analysis 
653 |a Coloring 
653 |a Computer applications 
653 |a Color 
653 |a Heuristic 
653 |a Evolutionary algorithms 
653 |a Competition 
653 |a Graph theory 
653 |a Graph coloring 
653 |a Genetic algorithms 
653 |a Problem solving 
653 |a Economic 
653 |a Methods 
653 |a Automation 
653 |a Artificial intelligence 
700 1 |a Gatica, Gustavo 
700 1 |a Parada, Víctor 
773 0 |t PLoS One  |g vol. 8, no. 3 (Mar 2013), p. e58551 
786 0 |d ProQuest  |t Health & Medical Collection 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/1330898270/abstract/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/1330898270/fulltext/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/1330898270/fulltextPDF/embedded/L8HZQI7Z43R0LA5T?source=fedsrch