Customizable execution environments for evolutionary computation using BOINC + virtualization

Сохранить в:
Библиографические подробности
Опубликовано в::Natural Computing vol. 12, no. 2 (Jun 2013), p. 163
Главный автор: Fernández De Vega, Francisco
Другие авторы: Olague, Gustavo, Trujillo, Leonardo, Lombraña González, Daniel
Опубликовано:
Springer Nature B.V.
Предметы:
Online-ссылка:Citation/Abstract
Full Text
Full Text - PDF
Метки: Добавить метку
Нет меток, Требуется 1-ая метка записи!

MARC

LEADER 00000nab a2200000uu 4500
001 1355329674
003 UK-CbPIL
022 |a 1567-7818 
022 |a 1572-9796 
024 7 |a 10.1007/s11047-012-9343-8  |2 doi 
035 |a 1355329674 
045 2 |b d20130601  |b d20130630 
084 |a 109034  |2 nlm 
100 1 |a Fernández De Vega, Francisco 
245 1 |a Customizable execution environments for evolutionary computation using BOINC + virtualization 
260 |b Springer Nature B.V.  |c Jun 2013 
513 |a Feature 
520 3 |a   Issue Title: Part 1: Special Issue: Distributed Evolutionary Computation in Informal Environments Part 2: Special Issue: DNA Computing 17 Evolutionary algorithms (EAs) consume large amounts of computational resources, particularly when they are used to solve real-world problems that require complex fitness evaluations. Beside the lack of resources, scientists face another problem: the absence of the required expertise to adapt applications for parallel and distributed computing models. Moreover, the computing power of PCs is frequently underused at institutions, as desktops are usually devoted to administrative tasks. Therefore, the proposal in this work consists of providing a framework that allows researchers to massively deploy EA experiments by exploiting the computing power of their instituions' PCs by setting up a Desktop Grid System based on the BOINC middleware. This paper presents a new model for running unmodified applications within BOINC with a web-based centralized management system for available resources. Thanks to this proposal, researchers can run scientific applications without modifying the application's source code, and at the same time manage thousands of computers from a single web page. Summarizing, this model allows the creation of on-demand customized execution environments within BOINC that can be used to harness unused computational resources for complex computational experiments, such as EAs. To show the performance of this model, a real-world application of Genetic Programming was used and tested through a centrally-managed desktop grid infrastructure. Results show the feasibility of the approach that has allowed researchers to generate new solutions by means of an easy to use and manage distributed system.[PUBLICATION ABSTRACT] 
653 |a Optimization algorithms 
653 |a Computer science 
653 |a Evolution 
653 |a Computer programming 
700 1 |a Olague, Gustavo 
700 1 |a Trujillo, Leonardo 
700 1 |a Lombraña González, Daniel 
773 0 |t Natural Computing  |g vol. 12, no. 2 (Jun 2013), p. 163 
786 0 |d ProQuest  |t Science Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/1355329674/abstract/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/1355329674/fulltext/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/1355329674/fulltextPDF/embedded/L8HZQI7Z43R0LA5T?source=fedsrch