Dynamics and Regulation of RecA Polymerization and De-Polymerization on Double-Stranded DNA

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PLoS One vol. 8, no. 6 (Jun 2013), p. e66712
1. Verfasser: Fu, Hongxia
Weitere Verfasser: Le, Shimin, Muniyappa, Kalappa, Yan, Jie
Veröffentlicht:
Public Library of Science
Schlagworte:
Online-Zugang:Citation/Abstract
Full Text
Full Text - PDF
Tags: Tag hinzufügen
Keine Tags, Fügen Sie das erste Tag hinzu!

MARC

LEADER 00000nab a2200000uu 4500
001 1369309634
003 UK-CbPIL
022 |a 1932-6203 
024 7 |a 10.1371/journal.pone.0066712  |2 doi 
035 |a 1369309634 
045 2 |b d20130601  |b d20130630 
084 |a 174835  |2 nlm 
100 1 |a Fu, Hongxia 
245 1 |a Dynamics and Regulation of RecA Polymerization and De-Polymerization on Double-Stranded DNA 
260 |b Public Library of Science  |c Jun 2013 
513 |a Journal Article 
520 3 |a The RecA filament formed on double-stranded (ds) DNA is proposed to be a functional state analogous to that generated during the process of DNA strand exchange. RecA polymerization and de-polymerization on dsDNA is governed by multiple physiological factors. However, a comprehensive understanding of how these factors regulate the processes of polymerization and de-polymerization of RecA filament on dsDNA is still evolving. Here, we investigate the effects of temperature, pH, tensile force, and DNA ends (in particular ssDNA overhang) on the polymerization and de-polymerization dynamics of the E. coli RecA filament at a single-molecule level. Our results identified the optimal conditions that permitted spontaneous RecA nucleation and polymerization, as well as conditions that could maintain the stability of a preformed RecA filament. Further examination at a nano-meter spatial resolution, by stretching short DNA constructs, revealed a striking dynamic RecA polymerization and de-polymerization induced saw-tooth pattern in DNA extension fluctuation. In addition, we show that RecA does not polymerize on S-DNA, a recently identified novel base-paired elongated DNA structure that was previously proposed to be a possible binding substrate for RecA. Overall, our studies have helped to resolve several previous single-molecule studies that reported contradictory and inconsistent results on RecA nucleation, polymerization and stability. Furthermore, our findings also provide insights into the regulatory mechanisms of RecA filament formation and stability in vivo. 
651 4 |a Singapore 
653 |a Polymerization 
653 |a Biochemistry 
653 |a DNA repair 
653 |a Binding sites 
653 |a Spatial discrimination 
653 |a RecA protein 
653 |a Nucleation 
653 |a DNA structure 
653 |a Competition 
653 |a Experiments 
653 |a Studies 
653 |a Environmental 
653 |a pH effects 
653 |a Deoxyribonucleic acid--DNA 
653 |a E coli 
653 |a Temperature effects 
653 |a Physiological effects 
653 |a Physiological factors 
653 |a Spatial resolution 
653 |a Stability 
653 |a Elongated structure 
700 1 |a Le, Shimin 
700 1 |a Muniyappa, Kalappa 
700 1 |a Yan, Jie 
773 0 |t PLoS One  |g vol. 8, no. 6 (Jun 2013), p. e66712 
786 0 |d ProQuest  |t Health & Medical Collection 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/1369309634/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/1369309634/fulltext/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/1369309634/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch