Emulating and Modeling for Position Errors of Ultra-Precision Aspherical Grinding

Spremljeno u:
Bibliografski detalji
Izdano u:Applied Mechanics and Materials vol. 10-12 (Dec 2007), p. 291
Glavni autor: Chen, Dong Ju
Daljnji autori: Zhang, Yong, Zhang, Fei Hu, Wang, H M
Izdano:
Trans Tech Publications Ltd.
Online pristup:Citation/Abstract
Full Text - PDF
Oznake: Dodaj oznaku
Bez oznaka, Budi prvi tko označuje ovaj zapis!

MARC

LEADER 00000nab a2200000uu 4500
001 1443898470
003 UK-CbPIL
020 |a 978-0-87849-470-5 
022 |a 1660-9336 
022 |a 1662-7482 
024 7 |a 10.4028/www.scientific.net/AMM.10-12.291  |2 doi 
035 |a 1443898470 
045 2 |b d20071201  |b d20071231 
084 |a 205230  |2 nlm 
100 1 |a Chen, Dong Ju 
245 1 |a Emulating and Modeling for Position Errors of Ultra-Precision Aspherical Grinding 
260 |b Trans Tech Publications Ltd.  |c Dec 2007 
513 |a Journal Article 
520 3 |a   In the process of the ultra-precision grinding, the machining path of the aspherical is the result of motor coordination by several axes for the numerical control system. Since the motion of each axis have errors, there are big errors between the real positions and the theoretical positions, and the position error of the wheel infects the accuracy of the workpiece greatly. This paper analyses the position error property of the wheel and finds the machining approach path has nothing to do with the position error, just do with to the present machining point. In order to solve the problem, the method using the Neural Network optimized by the Genetic Algorithm to establish the position error model is introduced. A three-layer error back propagation (simplified as BP) Neural Network is used to establish the position error model, the position coordinates (x, z) of the program instruction is input layer, and the corroding measured error value ( δx , δz ) is output layer. Before training data sample, using the Genetic Algorithm to optimize the Neural Network to improve the predicting accuracy of the Neural Network, and reduce the training time. The emulation results indicate that using the Neural Network model optimized by the Genetic Algorithm can predict the position error in a high degree of accuracy, and at the same time, according to the predicting results, compensating the position error of the wheel is possible. 
700 1 |a Zhang, Yong 
700 1 |a Zhang, Fei Hu 
700 1 |a Wang, H M 
773 0 |t Applied Mechanics and Materials  |g vol. 10-12 (Dec 2007), p. 291 
786 0 |d ProQuest  |t Materials Science Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/1443898470/abstract/embedded/H09TXR3UUZB2ISDL?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/1443898470/fulltextPDF/embedded/H09TXR3UUZB2ISDL?source=fedsrch