2D Laplace-Domain Waveform Inversion of Field Data Using a Power Objective Function

Gardado en:
Detalles Bibliográficos
Publicado en:Pure & Applied Geophysics vol. 170, no. 12 (Dec 2013), p. 2075
Autor Principal: Park, Eunjin
Outros autores: Ha, Wansoo, Chung, Wookeen, Shin, Changsoo, Min, Dong-joo
Publicado:
Springer Nature B.V.
Materias:
Acceso en liña:Citation/Abstract
Full Text
Full Text - PDF
Etiquetas: Engadir etiqueta
Sen Etiquetas, Sexa o primeiro en etiquetar este rexistro!

MARC

LEADER 00000nab a2200000uu 4500
001 1449927024
003 UK-CbPIL
022 |a 0033-4553 
022 |a 1420-9136 
022 |a 0367-4355 
024 7 |a 10.1007/s00024-013-0651-4  |2 doi 
035 |a 1449927024 
045 2 |b d20131201  |b d20131231 
084 |a 108143  |2 nlm 
100 1 |a Park, Eunjin 
245 1 |a 2D Laplace-Domain Waveform Inversion of Field Data Using a Power Objective Function 
260 |b Springer Nature B.V.  |c Dec 2013 
513 |a Feature 
520 3 |a The wavefield in the Laplace domain has a very small amplitude except only near the source point. In order to deal with this characteristic, the logarithmic objective function has been used in many Laplace domain inversion studies. The Laplace-domain waveform inversion using the logarithmic objective function has fewer local minima than the time- or frequency domain inversion. Recently, the power objective function was suggested as an alternative to the logarithmic objective function in the Laplace domain. Since amplitudes of wavefields are very small generally, a power <1 amplifies the wavefields especially at large offset. Therefore, the power objective function can enhance the Laplace-domain inversion results. In previous studies about synthetic datasets, it is confirmed that the inversion using a power objective function shows a similar result when compared with the inversion using a logarithmic objective function. In this paper, we apply an inversion algorithm using a power objective function to field datasets. We perform the waveform inversion using the power objective function and compare the result obtained by the logarithmic objective function. The Gulf of Mexico dataset is used for the comparison. When we use a power objective function in the inversion algorithm, it is important to choose the appropriate exponent. By testing the various exponents, we can select the range of the exponent from 5 × 10^sup -3^ to 5 × 10^sup -8^ in the Gulf of Mexico dataset. The results obtained from the power objective function with appropriate exponent are very similar to the results of the logarithmic objective function. Even though we do not get better results than the conventional method, we can confirm the possibility of applying the power objective function for field data. In addition, the power objective function shows good results in spite of little difference in the amplitude of the wavefield. Based on these results, we can expect that the power objective function will produce good results from the data with a small amplitude difference. Also, it can partially be utilized at the sections where the amplitude difference is very small.[PUBLICATION ABSTRACT] 
653 |a Laplace transforms 
653 |a Waveform analysis 
653 |a Mathematics 
653 |a Algorithms 
653 |a Objective function 
653 |a Environmental 
700 1 |a Ha, Wansoo 
700 1 |a Chung, Wookeen 
700 1 |a Shin, Changsoo 
700 1 |a Min, Dong-joo 
773 0 |t Pure & Applied Geophysics  |g vol. 170, no. 12 (Dec 2013), p. 2075 
786 0 |d ProQuest  |t Science Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/1449927024/abstract/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/1449927024/fulltext/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/1449927024/fulltextPDF/embedded/6A8EOT78XXH2IG52?source=fedsrch