Using a neural network approach and time series data from an international monitoring station in the Yellow Sea for modeling marine ecosystems

محفوظ في:
التفاصيل البيبلوغرافية
الحاوية / القاعدة:Environmental Monitoring and Assessment vol. 186, no. 1 (Jan 2014), p. 515
المؤلف الرئيسي: Zhang, Yingying
مؤلفون آخرون: Wang, Juncheng, Vorontsov, A M, Hou, Guangli, Nikanorova, M N, Wang, Hongliang
منشور في:
Springer Nature B.V.
الموضوعات:
الوصول للمادة أونلاين:Citation/Abstract
Full Text
Full Text - PDF
الوسوم: إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!

MARC

LEADER 00000nab a2200000uu 4500
001 1466163089
003 UK-CbPIL
022 |a 0167-6369 
022 |a 1573-2959 
024 7 |a 10.1007/s10661-013-3396-8  |2 doi 
035 |a 1466163089 
045 2 |b d20140101  |b d20140131 
084 |a 24057664 
084 |a 108264  |2 nlm 
100 1 |a Zhang, Yingying 
245 1 |a Using a neural network approach and time series data from an international monitoring station in the Yellow Sea for modeling marine ecosystems 
260 |b Springer Nature B.V.  |c Jan 2014 
513 |a Feature Journal Article 
520 3 |a The international marine ecological safety monitoring demonstration station in the Yellow Sea was developed as a collaborative project between China and Russia. It is a nonprofit technical workstation designed as a facility for marine scientific research for public welfare. By undertaking long-term monitoring of the marine environment and automatic data collection, this station will provide valuable information for marine ecological protection and disaster prevention and reduction. The results of some initial research by scientists at the research station into predictive modeling of marine ecological environments and early warning are described in this paper. Marine ecological processes are influenced by many factors including hydrological and meteorological conditions, biological factors, and human activities. Consequently, it is very difficult to incorporate all these influences and their interactions in a deterministic or analysis model. A prediction model integrating a time series prediction approach with neural network nonlinear modeling is proposed for marine ecological parameters. The model explores the natural fluctuations in marine ecological parameters by learning from the latest observed data automatically, and then predicting future values of the parameter. The model is updated in a "rolling" fashion with new observed data from the monitoring station. Prediction experiments results showed that the neural network prediction model based on time series data is effective for marine ecological prediction and can be used for the development of early warning systems.[PUBLICATION ABSTRACT]   The international marine ecological safety monitoring demonstration station in the Yellow Sea was developed as a collaborative project between China and Russia. It is a nonprofit technical workstation designed as a facility for marine scientific research for public welfare. By undertaking long-term monitoring of the marine environment and automatic data collection, this station will provide valuable information for marine ecological protection and disaster prevention and reduction. The results of some initial research by scientists at the research station into predictive modeling of marine ecological environments and early warning are described in this paper. Marine ecological processes are influenced by many factors including hydrological and meteorological conditions, biological factors, and human activities. Consequently, it is very difficult to incorporate all these influences and their interactions in a deterministic or analysis model. A prediction model integrating a time series prediction approach with neural network nonlinear modeling is proposed for marine ecological parameters. The model explores the natural fluctuations in marine ecological parameters by learning from the latest observed data automatically, and then predicting future values of the parameter. The model is updated in a "rolling" fashion with new observed data from the monitoring station. Prediction experiments results showed that the neural network prediction model based on time series data is effective for marine ecological prediction and can be used for the development of early warning systems. 
650 2 2 |a China 
650 2 2 |a Ecosystem 
650 1 2 |a Environmental Monitoring  |x methods 
650 1 2 |a Neural Networks (Computer) 
650 2 2 |a Oceans & Seas 
650 2 2 |a Time 
650 1 2 |a Water Pollution  |x statistics & numerical data 
651 4 |a Yellow Sea 
653 |a Marine ecology 
653 |a Time series 
653 |a Neural networks 
653 |a Analysis 
653 |a Studies 
653 |a Computer centers 
653 |a Automation 
653 |a Water quality 
653 |a Work stations 
653 |a Scientists 
653 |a Collaboration 
653 |a Information storage 
653 |a Chemical oxygen demand 
653 |a Emergency communications systems 
653 |a Hydrology 
653 |a Ecosystems 
653 |a Climate change 
653 |a Ecological research 
653 |a Testing laboratories 
653 |a Warning systems 
653 |a Marine environment 
653 |a Emergency preparedness 
653 |a Marine ecosystems 
653 |a Data collection 
653 |a Prediction models 
653 |a Environmental 
700 1 |a Wang, Juncheng 
700 1 |a Vorontsov, A M 
700 1 |a Hou, Guangli 
700 1 |a Nikanorova, M N 
700 1 |a Wang, Hongliang 
773 0 |t Environmental Monitoring and Assessment  |g vol. 186, no. 1 (Jan 2014), p. 515 
786 0 |d ProQuest  |t ABI/INFORM Global 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/1466163089/abstract/embedded/ZKJTFFSVAI7CB62C?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/1466163089/fulltext/embedded/ZKJTFFSVAI7CB62C?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/1466163089/fulltextPDF/embedded/ZKJTFFSVAI7CB62C?source=fedsrch