Bridge: a GUI package for genetic risk prediction

שמור ב:
מידע ביבליוגרפי
הוצא לאור ב:BMC Genetics vol. 14 (2013), p. n/a
מחבר ראשי: Ye, Chengyin
מחברים אחרים: Lu, Qing
יצא לאור:
Springer Nature B.V.
נושאים:
גישה מקוונת:Citation/Abstract
Full Text
Full Text - PDF
תגים: הוספת תג
אין תגיות, היה/י הראשונ/ה לתייג את הרשומה!

MARC

LEADER 00000nab a2200000uu 4500
001 1471062696
003 UK-CbPIL
022 |a 1471-2156 
022 |a 2730-6844 
024 7 |a 10.1186/1471-2156-14-122  |2 doi 
035 |a 1471062696 
045 2 |b d20130101  |b d20131231 
084 |a 24359333 
084 |a 58494  |2 nlm 
100 1 |a Ye, Chengyin 
245 1 |a Bridge: a GUI package for genetic risk prediction 
260 |b Springer Nature B.V.  |c 2013 
513 |a Journal Article 
520 3 |a   Doc number: 122 Abstract Background: Risk prediction models capitalizing on genetic and environmental information hold great promise for individualized disease prediction and prevention. Nevertheless, linking the genetic and environmental risk predictors into a useful risk prediction model remains a great challenge. To facilitate risk prediction analyses, we have developed a graphical user interface package, Bridge . Results: The package is built for both designing and analyzing a risk prediction model. In the design stage, it provides an estimated classification accuracy of the model using essential genetic and environmental information gained from public resources and/or previous studies, and determines the sample size required to verify this accuracy. In the analysis stage, it adopts a robust and powerful algorithm to form the risk prediction model. Conclusions: The package is developed based on the optimality theory of the likelihood ratio and therefore theoretically could form a model with high performance. It can be used to handle a relatively large number of genetic and environmental predictors, with consideration of their possible interactions, and so is particularly useful for studying risk prediction models for common complex diseases.   Risk prediction models capitalizing on genetic and environmental information hold great promise for individualized disease prediction and prevention. Nevertheless, linking the genetic and environmental risk predictors into a useful risk prediction model remains a great challenge. To facilitate risk prediction analyses, we have developed a graphical user interface package, Bridge. The package is built for both designing and analyzing a risk prediction model. In the design stage, it provides an estimated classification accuracy of the model using essential genetic and environmental information gained from public resources and/or previous studies, and determines the sample size required to verify this accuracy. In the analysis stage, it adopts a robust and powerful algorithm to form the risk prediction model. The package is developed based on the optimality theory of the likelihood ratio and therefore theoretically could form a model with high performance. It can be used to handle a relatively large number of genetic and environmental predictors, with consideration of their possible interactions, and so is particularly useful for studying risk prediction models for common complex diseases. 
610 4 |a Michigan State University 
650 2 2 |a Algorithms 
650 2 2 |a Area Under Curve 
650 2 2 |a Crohn Disease  |x etiology 
650 2 2 |a Crohn Disease  |x genetics 
650 2 2 |a Humans 
650 1 2 |a Models, Genetic 
650 2 2 |a Polymorphism, Single Nucleotide 
650 2 2 |a ROC Curve 
650 2 2 |a Risk Factors 
650 1 2 |a Software 
650 2 2 |a User-Computer Interface 
653 |a Studies 
653 |a Child abuse & neglect 
653 |a Accuracy 
653 |a Disease 
653 |a Programming languages 
653 |a Epidemiology 
653 |a User interface 
653 |a Operating systems 
653 |a Mortality 
700 1 |a Lu, Qing 
773 0 |t BMC Genetics  |g vol. 14 (2013), p. n/a 
786 0 |d ProQuest  |t Health & Medical Collection 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/1471062696/abstract/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/1471062696/fulltext/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/1471062696/fulltextPDF/embedded/6A8EOT78XXH2IG52?source=fedsrch