Automated Factor Slice Sampling

Furkejuvvon:
Bibliográfalaš dieđut
Publikašuvnnas:Journal of Computational and Graphical Statistics vol. 23, no. 2 (2014), p. 543
Váldodahkki: Tibbits, Matthew M
Eará dahkkit: Groendyke, Chris, Haran, Murali, Liechty, John C
Almmustuhtton:
Taylor & Francis Ltd.
Fáttát:
Liŋkkat:Citation/Abstract
Fáddágilkorat: Lasit fáddágilkoriid
Eai fáddágilkorat, Lasit vuosttaš fáddágilkora!

MARC

LEADER 00000nab a2200000uu 4500
001 1523935349
003 UK-CbPIL
022 |a 1061-8600 
022 |a 1537-2715 
035 |a 1523935349 
045 2 |b d20140601  |b d20140831 
084 |a 66303  |2 nlm 
100 1 |a Tibbits, Matthew M 
245 1 |a Automated Factor Slice Sampling 
260 |b Taylor & Francis Ltd.  |c 2014 
513 |a Feature 
520 3 |a Markov chain Monte Carlo (MCMC) algorithms offer a very general approach for sampling from arbitrary distributions. However, designing and tuning MCMC algorithms for each new distribution can be challenging and time consuming. It is particularly difficult to create an efficient sampler when there is strong dependence among the variables in a multivariate distribution. We describe a two-pronged approach for constructing efficient, automated MCMC algorithms: (1) we propose the "factor slice sampler," a generalization of the univariate slice sampler where we treat the selection of a coordinate basis (factors) as an additional tuning parameter, and (2) we develop an approach for automatically selecting tuning parameters to construct an efficient factor slice sampler. In addition to automating the factor slice sampler, our tuning approach also applies to the standard univariate slice samplers. We demonstrate the efficiency and general applicability of our automated MCMC algorithm with a number of illustrative examples. [PUBLICATION ABSTRACT] 
653 |a Markov analysis 
653 |a Monte Carlo simulation 
653 |a Studies 
653 |a Algorithms 
653 |a Multivariate analysis 
653 |a Probability distribution 
653 |a Automation 
700 1 |a Groendyke, Chris 
700 1 |a Haran, Murali 
700 1 |a Liechty, John C 
773 0 |t Journal of Computational and Graphical Statistics  |g vol. 23, no. 2 (2014), p. 543 
786 0 |d ProQuest  |t ABI/INFORM Global 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/1523935349/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch