Ligand binding and homology modelling of insect odorant-binding proteins

Guardado en:
Detalles Bibliográficos
Publicado en:Physiological Entomology vol. 39, no. 3 (Sep 2014), p. 183
Autor principal: Venthur, Herbert
Otros Autores: Mutis, Ana, Zhou, Jing-Jiang, Quiroz, Andrés
Publicado:
Wiley Subscription Services, Inc.
Materias:
Acceso en línea:Citation/Abstract
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 1555020642
003 UK-CbPIL
022 |a 0307-6962 
022 |a 1365-3032 
024 7 |a 10.1111/phen.12066  |2 doi 
035 |a 1555020642 
045 2 |b d20140901  |b d20140930 
084 |a 38642  |2 nlm 
100 1 |a Venthur, Herbert 
245 1 |a Ligand binding and homology modelling of insect odorant-binding proteins 
260 |b Wiley Subscription Services, Inc.  |c Sep 2014 
513 |a Journal Article 
520 3 |a This review describes the main characteristics of odorant-binding proteins (OBPs) for homology modelling and presents a summary of structure prediction studies on insect OBPs, along with the steps involved and some limitations and improvements. The technique involves a computing approach to model protein structures and is based on a comparison between a target (unknown structure) and one or more templates (experimentally determined structures). As targets for structure prediction, OBPs are considered to play a functional role for recognition, desorption, scavenging, protection and transportation of hydrophobic molecules (odourants) across an aqueous environment (lymph) to olfactory receptor neurones (ORNs) located in sensilla, the main olfactory units of insect antennae. Lepidopteran pheromone-binding proteins, a subgroup of OBPs, are characterized by remarkable structural features, in which high sequence identities (approximately 30%) among these OBPs and a large number of available templates can facilitate the prediction of precise homology models. Approximately 30 studies have been performed on insect OBPs using homology modelling as a tool to predict their structures. Although some of the studies have assessed ligand-binding affinity using structural information and biochemical measurements, few have performed docking and molecular dynamic (MD) simulations as a virtual method to predict best ligands. Docking and MD simulations are discussed in the context of discovery of novel semiochemicals (super-ligands) using homology modelling to conceive further strategies in insect management. [PUBLICATION ABSTRACT] 
653 |a Insects 
653 |a Environmental 
700 1 |a Mutis, Ana 
700 1 |a Zhou, Jing-Jiang 
700 1 |a Quiroz, Andrés 
773 0 |t Physiological Entomology  |g vol. 39, no. 3 (Sep 2014), p. 183 
786 0 |d ProQuest  |t Agriculture Science Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/1555020642/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch