Implementing Spatial Segregation Measures in R

Guardado en:
Detalles Bibliográficos
Publicado en:PLoS One vol. 9, no. 11 (Nov 2014), p. e113767
Autor principal: Seong-Yun, Hong
Otros Autores: O'Sullivan, David, Sadahiro, Yukio
Publicado:
Public Library of Science
Materias:
Acceso en línea:Citation/Abstract
Full Text
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 1626822609
003 UK-CbPIL
022 |a 1932-6203 
024 7 |a 10.1371/journal.pone.0113767  |2 doi 
035 |a 1626822609 
045 2 |b d20141101  |b d20141130 
084 |a 174835  |2 nlm 
100 1 |a Seong-Yun, Hong 
245 1 |a Implementing Spatial Segregation Measures in R 
260 |b Public Library of Science  |c Nov 2014 
513 |a Journal Article 
520 3 |a Reliable and accurate estimation of residential segregation between population groups is important for understanding the extent of social cohesion and integration in our society. Although there have been considerable methodological advances in the measurement of segregation over the last several decades, the recently developed measures have not been widely used in the literature, in part due to their complex calculation. To address this problem, we have implemented several newly proposed segregation indices in R, an open source software environment for statistical computing and graphics, as a package called seg. Although there are already a few standalone applications and add-on packages that provide access to similar methods, our implementation has a number of advantages over the existing tools. First, our implementation is flexible in the sense that it provides detailed control over the calculation process with a wide range of input parameters. Most of the parameters have carefully chosen defaults, which perform acceptably in many situations, so less experienced users can also use the implemented functions without too much difficulty. Second, there is no need to export results to other software programs for further analysis. We provide coercion methods that enable the transformation of our output classes into general R classes, so the user can use thousands of standard and modern statistical techniques, which are already available in R, for the post-processing of the results. Third, our implementation does not require commercial software to operate, so it is accessible to a wider group of people. 
610 4 |a University of Tokyo 
651 4 |a United States--US 
651 4 |a California 
651 4 |a Japan 
653 |a Software 
653 |a Population 
653 |a Geography 
653 |a Computer programs 
653 |a Censuses 
653 |a Mathematical analysis 
653 |a Science 
653 |a Studies 
653 |a Open source software 
653 |a Sociology 
653 |a Statistical analysis 
653 |a Spatial data 
653 |a Social sciences 
653 |a Population (statistical) 
653 |a Social 
653 |a Information science 
653 |a Statistical methods 
653 |a Post-production processing 
653 |a Property 
653 |a Social cohesion 
653 |a Computation 
653 |a Residential segregation 
653 |a Implementation 
653 |a Measures 
653 |a Coercion 
653 |a Measurement 
653 |a Transformation 
653 |a Copyright 
700 1 |a O'Sullivan, David 
700 1 |a Sadahiro, Yukio 
773 0 |t PLoS One  |g vol. 9, no. 11 (Nov 2014), p. e113767 
786 0 |d ProQuest  |t Health & Medical Collection 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/1626822609/abstract/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/1626822609/fulltext/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/1626822609/fulltextPDF/embedded/L8HZQI7Z43R0LA5T?source=fedsrch