Time-varying space-time autoregressive filtering algorithm for space-time adaptive processing

Guardado en:
Detalles Bibliográficos
Publicado en:IET Radar, Sonar & Navigation vol. 6, no. 4 (Apr 2012), p. 213-221
Autor principal: Wu, D
Otros Autores: Zhu, D, Shen, M, Zhu, Z
Publicado:
The Institution of Engineering & Technology
Acceso en línea:Citation/Abstract
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 1638872374
003 UK-CbPIL
022 |a 1751-8784 
022 |a 1751-8792 
035 |a 1638872374 
045 2 |b d20120401  |b d20120430 
084 |a 186432  |2 nlm 
100 1 |a Wu, D 
245 1 |a Time-varying space-time autoregressive filtering algorithm for space-time adaptive processing 
260 |b The Institution of Engineering & Technology  |c Apr 2012 
513 |a Feature 
520 3 |a   This study introduces a new type of space-time autoregressive (STAR) filtering algorithm for space-time adaptive processing (STAP) operating in a clutter environment that is not strictly stationary in slow time. The original STAR approach based on stationary autoregressive (AR) model, despite enjoying a fast convergence rate, suffers significant performance degradation when dealing with non-stationary clutter processes. To remedy this, the new proposed algorithm invokes a 'relaxed' AR model, that is, the time-varying autoregressive (TVAR) model, and is called time-varying space-time autoregressive (TV-STAR) filtering. The authors demonstrate that, for stationary case, the two filters have identical output signal-to-interference plus noise ratio with known interference covariance, but the convergence rate of TV-STAR is somewhat inferior to STAR with finite sample support. However, in the non-stationary case, the STAR filter totally fails because of 'model-mismatch', whereas TV-STAR exhibits a commensurate performance with respect to the stationary case. Meanwhile, TV-STAR is shown to offer a favourable convergence rate over reduced-rank STAP techniques such as eigencanceler method in both cases. 
700 1 |a Zhu, D 
700 1 |a Shen, M 
700 1 |a Zhu, Z 
773 0 |t IET Radar, Sonar & Navigation  |g vol. 6, no. 4 (Apr 2012), p. 213-221 
786 0 |d ProQuest  |t Advanced Technologies & Aerospace Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/1638872374/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/1638872374/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch