Möbius-Walsh correlation bounds and an estimate of Mauduit and Rivat
Guardado en:
| Publicado en: | Journal d'Analyse Mathématique vol. 119, no. 1 (Apr 2013), p. 147 |
|---|---|
| Autor principal: | |
| Publicado: |
Springer Nature B.V.
|
| Acceso en línea: | Citation/Abstract Full Text Full Text - PDF |
| Etiquetas: |
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
MARC
| LEADER | 00000nab a2200000uu 4500 | ||
|---|---|---|---|
| 001 | 1655296824 | ||
| 003 | UK-CbPIL | ||
| 022 | |a 0021-7670 | ||
| 022 | |a 1565-8538 | ||
| 024 | 7 | |a 10.1007/s11854-013-0005-2 |2 doi | |
| 035 | |a 1655296824 | ||
| 045 | 2 | |b d20130401 |b d20130430 | |
| 084 | |a 242334 |2 nlm | ||
| 100 | 1 | |a Bourgain, J | |
| 245 | 1 | |a Möbius-Walsh correlation bounds and an estimate of Mauduit and Rivat | |
| 260 | |b Springer Nature B.V. |c Apr 2013 | ||
| 513 | |a Feature | ||
| 520 | 3 | |a We establish small correlation bounds for the Möbius function and the Walsh system, answering affirmatively a question posed by G. Kalai [Ka] . The argument is based on generalizing the approach of Mauduit and Rivat [M-R] in order to treat Walsh functions of "large weight", while the "small weight" case follows from recent work due to B. Green [Gr] . The conclusion is an estimate uniform over the full Walsh system. A similar result also holds for the Liouville function. | |
| 773 | 0 | |t Journal d'Analyse Mathématique |g vol. 119, no. 1 (Apr 2013), p. 147 | |
| 786 | 0 | |d ProQuest |t Science Database | |
| 856 | 4 | 1 | |3 Citation/Abstract |u https://www.proquest.com/docview/1655296824/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch |
| 856 | 4 | 0 | |3 Full Text |u https://www.proquest.com/docview/1655296824/fulltext/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch |
| 856 | 4 | 0 | |3 Full Text - PDF |u https://www.proquest.com/docview/1655296824/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch |