Estimating Urban Traffic Patterns through Probabilistic Interconnectivity of Road Network Junctions

Збережено в:
Бібліографічні деталі
Опубліковано в::PLoS One vol. 10, no. 5 (May 2015), p. e0127095
Автор: Manley, Ed
Опубліковано:
Public Library of Science
Предмети:
Онлайн доступ:Citation/Abstract
Full Text
Full Text - PDF
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!

MARC

LEADER 00000nab a2200000uu 4500
001 1683369407
003 UK-CbPIL
022 |a 1932-6203 
024 7 |a 10.1371/journal.pone.0127095  |2 doi 
035 |a 1683369407 
045 2 |b d20150501  |b d20150531 
084 |a 174835  |2 nlm 
100 1 |a Manley, Ed 
245 1 |a Estimating Urban Traffic Patterns through Probabilistic Interconnectivity of Road Network Junctions 
260 |b Public Library of Science  |c May 2015 
513 |a Journal Article 
520 3 |a The emergence of large, fine-grained mobility datasets offers significant opportunities for the development and application of new methodologies for transportation analysis. In this paper, the link between routing behaviour and traffic patterns in urban areas is examined, introducing a method to derive estimates of traffic patterns from a large collection of fine-grained routing data. Using this dataset, the interconnectivity between road network junctions is extracted in the form of a Markov chain. This representation encodes the probability of the successive usage of adjacent road junctions, encoding routes as flows between decision points rather than flows along road segments. This network of functional interactions is then integrated within a modified Markov chain Monte Carlo (MCMC) framework, adapted for the estimation of urban traffic patterns. As part of this approach, the data-derived links between major junctions influence the movement of directed random walks executed across the network to model origin-destination journeys. The simulation process yields estimates of traffic distribution across the road network. The paper presents an implementation of the modified MCMC approach for London, United Kingdom, building an MCMC model based on a dataset of nearly 700000 minicab routes. Validation of the approach clarifies how each element of the MCMC framework contributes to junction prediction performance, and finds promising results in relation to the estimation of junction choice and minicab traffic distribution. The paper concludes by summarising the potential for the development and extension of this approach to the wider urban modelling domain. 
653 |a Economic 
653 |a Global positioning systems--GPS 
653 |a Data processing 
653 |a Monte Carlo simulation 
653 |a Markov chains 
653 |a Bayesian analysis 
653 |a Navigation behavior 
653 |a Random walk 
653 |a Traffic flow 
653 |a Traffic models 
653 |a Statistical analysis 
653 |a Computer simulation 
653 |a Markov analysis 
653 |a Urban areas 
653 |a Traffic 
653 |a Roads & highways 
773 0 |t PLoS One  |g vol. 10, no. 5 (May 2015), p. e0127095 
786 0 |d ProQuest  |t Health & Medical Collection 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/1683369407/abstract/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/1683369407/fulltext/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/1683369407/fulltextPDF/embedded/6A8EOT78XXH2IG52?source=fedsrch