Parametric Modeling of Visual Search Efficiency in Real Scenes

Guardado en:
Bibliografiske detaljer
Udgivet i:PLoS One vol. 10, no. 6 (Jun 2015), p. e0128545
Hovedforfatter: Zhang, Xing
Andre forfattere: Li, Qingquan, Zou, Qin, Fang, Zhixiang, Zhou, Baoding
Udgivet:
Public Library of Science
Fag:
Online adgang:Citation/Abstract
Full Text
Full Text - PDF
Tags: Tilføj Tag
Ingen Tags, Vær først til at tagge denne postø!

MARC

LEADER 00000nab a2200000uu 4500
001 1684995411
003 UK-CbPIL
022 |a 1932-6203 
024 7 |a 10.1371/journal.pone.0128545  |2 doi 
035 |a 1684995411 
045 2 |b d20150601  |b d20150630 
084 |a 174835  |2 nlm 
100 1 |a Zhang, Xing 
245 1 |a Parametric Modeling of Visual Search Efficiency in Real Scenes 
260 |b Public Library of Science  |c Jun 2015 
513 |a Journal Article 
520 3 |a How should the efficiency of searching for real objects in real scenes be measured? Traditionally, when searching for artificial targets, e.g., letters or rectangles, among distractors, efficiency is measured by a reaction time (RT) × Set Size function. However, it is not clear whether the set size of real scenes is as effective a parameter for measuring search efficiency as the set size of artificial scenes. The present study investigated search efficiency in real scenes based on a combination of low-level features, e.g., visible size and target-flanker separation factors, and high-level features, e.g., category effect and target template. Visible size refers to the pixel number of visible parts of an object in a scene, whereas separation is defined as the sum of the flank distances from a target to the nearest distractors. During the experiment, observers searched for targets in various urban scenes, using pictures as the target templates. The results indicated that the effect of the set size in real scenes decreased according to the variances of other factors, e.g., visible size and separation. Increasing visible size and separation factors increased search efficiency. Based on these results, an RT × Visible Size × Separation function was proposed. These results suggest that the proposed function is a practicable predictor of search efficiency in real scenes. 
610 4 |a Wuhan University 
651 4 |a China 
653 |a Eye movements 
653 |a Visual perception 
653 |a Remote sensing 
653 |a Reaction time 
653 |a Separation 
653 |a Efficiency 
653 |a Searching 
653 |a Environmental 
653 |a Engineering 
653 |a Pictures 
653 |a Attention 
653 |a Rectangles 
653 |a Visual task performance 
653 |a Laboratories 
653 |a Parametric statistics 
700 1 |a Li, Qingquan 
700 1 |a Zou, Qin 
700 1 |a Fang, Zhixiang 
700 1 |a Zhou, Baoding 
773 0 |t PLoS One  |g vol. 10, no. 6 (Jun 2015), p. e0128545 
786 0 |d ProQuest  |t Health & Medical Collection 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/1684995411/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/1684995411/fulltext/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/1684995411/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch