Study on the Optimization of Complex Computer Network Language Based on TEI Model

Guardado en:
Detalles Bibliográficos
Publicado en:Applied Mechanics and Materials vol. 513-517 (Feb 2014), p. 2345
Autor principal: Zhang, Su Ying
Publicado:
Trans Tech Publications Ltd.
Acceso en línea:Citation/Abstract
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 1718999745
003 UK-CbPIL
020 |a 978-3-03835-012-5 
022 |a 1660-9336 
022 |a 1662-7482 
024 7 |a 10.4028/www.scientific.net/AMM.513-517.2345  |2 doi 
035 |a 1718999745 
045 2 |b d20140201  |b d20140228 
084 |a 205230  |2 nlm 
100 1 |a Zhang, Su Ying 
245 1 |a Study on the Optimization of Complex Computer Network Language Based on TEI Model 
260 |b Trans Tech Publications Ltd.  |c Feb 2014 
513 |a Journal Article 
520 3 |a   With the popularization of internet, cyber language is used more and more frequently. The network language has formed a unique system of computer language library. So studying of computer language has great significance to the development of the network language. Language library capacity cant be unlimited expansion. To enhance the computer language network function we must use correlation algorithm to simplify the computer language. In this paper, an improved method based on the network language new is proposed. We apply the neural network speech recognition model with multi hierarchy recognition technology to computer language, and put forward TEI model of computer network language identification. We use the VB program to call on the MATLAB software, successfully simplify the complex recognition process of the network language. At the same time, computer network language also has certain reference value for English language learning. It can help learners to avoid the negative effects of network language on the English language. 
773 0 |t Applied Mechanics and Materials  |g vol. 513-517 (Feb 2014), p. 2345 
786 0 |d ProQuest  |t Materials Science Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/1718999745/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/1718999745/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch