Parallel relational databases for diameter calculation of large graphs

Na minha lista:
Detalhes bibliográficos
Publicado no:Proceedings of the International Conference on Parallel and Distributed Processing Techniques and Applications (PDPTA) (2016), p. 213-220
Autor principal: Fernandes, Fabiano da Silva
Outros Autores: Yero, Eduardo Javier Huerta
Publicado em:
The Steering Committee of The World Congress in Computer Science, Computer Engineering and Applied Computing (WorldComp)
Acesso em linha:Citation/Abstract
Full Text
Full Text - PDF
Tags: Adicionar Tag
Sem tags, seja o primeiro a adicionar uma tag!

MARC

LEADER 00000nab a2200000uu 4500
001 1807220286
003 UK-CbPIL
035 |a 1807220286 
045 2 |b d20160101  |b d20161231 
084 |a 184247  |2 nlm 
100 1 |a Fernandes, Fabiano da Silva 
245 1 |a Parallel relational databases for diameter calculation of large graphs 
260 |b The Steering Committee of The World Congress in Computer Science, Computer Engineering and Applied Computing (WorldComp)  |c 2016 
513 |a Feature 
520 3 |a   Parallel relational databases are seldom considered as a solution for representing and processing large graphs. Current literature shows a strong body of work on graph processing using either the MapReduce model or NoSQL databases specifically designed for graphs. However, parallel relational databases have been shown to outperform MapReduce implementations in a number of cases, and there are no clear reasons to assume that graph processing should be any different. Graph databases, on the other hand, do not commonly support the parallel execution of single queries and are therefore limited to the processing power of single nodes. In this paper, we compare a parallel relational database (Greenplum), a graph database (Neo4J) and a MapReduce implementation (Hadoop) for the problem of calculating the diameter of a graph. Results show that Greenplum produces the best execution times, and that Hadoop barely outperforms Neo4J even when using a much larger set of computers. 
700 1 |a Yero, Eduardo Javier Huerta 
773 0 |t Proceedings of the International Conference on Parallel and Distributed Processing Techniques and Applications (PDPTA)  |g (2016), p. 213-220 
786 0 |d ProQuest  |t Advanced Technologies & Aerospace Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/1807220286/abstract/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/1807220286/fulltext/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/1807220286/fulltextPDF/embedded/L8HZQI7Z43R0LA5T?source=fedsrch