Optimizing SIEM Throughput on the Cloud Using Parallelization

Guardado en:
Detalles Bibliográficos
Publicado en:PLoS One vol. 11, no. 11 (Nov 2016), p. e0162746
Autor principal: Alam, Masoom
Otros Autores: Asif Ihsan, Khan, Muazzam A, Javaid, Qaisar, Khan, Abid, Manzoor, Jawad, Akhundzada, Adnan, Khan, M Khurram, Farooq, Sajid
Publicado:
Public Library of Science
Materias:
Acceso en línea:Citation/Abstract
Full Text
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 1841158378
003 UK-CbPIL
022 |a 1932-6203 
024 7 |a 10.1371/journal.pone.0162746  |2 doi 
035 |a 1841158378 
045 2 |b d20161101  |b d20161130 
084 |a 174835  |2 nlm 
100 1 |a Alam, Masoom 
245 1 |a Optimizing SIEM Throughput on the Cloud Using Parallelization 
260 |b Public Library of Science  |c Nov 2016 
513 |a Journal Article 
520 3 |a Processing large amounts of data in real time for identifying security issues pose several performance challenges, especially when hardware infrastructure is limited. Managed Security Service Providers (MSSP), mostly hosting their applications on the Cloud, receive events at a very high rate that varies from a few hundred to a couple of thousand events per second (EPS). It is critical to process this data efficiently, so that attacks could be identified quickly and necessary response could be initiated. This paper evaluates the performance of a security framework OSTROM built on the Esper complex event processing (CEP) engine under a parallel and non-parallel computational framework. We explain three architectures under which Esper can be used to process events. We investigated the effect on throughput, memory and CPU usage in each configuration setting. The results indicate that the performance of the engine is limited by the number of events coming in rather than the queries being processed. The architecture where 1/4th of the total events are submitted to each instance and all the queries are processed by all the units shows best results in terms of throughput, memory and CPU usage. 
610 4 |a King Saud University 
651 4 |a Pakistan 
651 4 |a Islamabad Pakistan 
651 4 |a Rawalpindi Pakistan 
653 |a International conferences 
653 |a Data processing 
653 |a Parallel processing 
653 |a Computer science 
653 |a Cloud computing 
653 |a Real time 
653 |a Sensors 
653 |a Computer applications 
653 |a Information technology 
653 |a Query processing 
653 |a Economic 
653 |a Central processing units--CPUs 
653 |a Big Data 
653 |a Social networks 
653 |a Websites 
653 |a Security services 
700 1 |a Asif Ihsan 
700 1 |a Khan, Muazzam A 
700 1 |a Javaid, Qaisar 
700 1 |a Khan, Abid 
700 1 |a Manzoor, Jawad 
700 1 |a Akhundzada, Adnan 
700 1 |a Khan, M Khurram 
700 1 |a Farooq, Sajid 
773 0 |t PLoS One  |g vol. 11, no. 11 (Nov 2016), p. e0162746 
786 0 |d ProQuest  |t Health & Medical Collection 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/1841158378/abstract/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/1841158378/fulltext/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/1841158378/fulltextPDF/embedded/L8HZQI7Z43R0LA5T?source=fedsrch