Predicting Virtual World User Population Fluctuations with Deep Learning

Guardat en:
Dades bibliogràfiques
Publicat a:PLoS One vol. 11, no. 12 (Dec 2016), p. e0167153
Autor principal: Young Bin Kim
Altres autors: Park, Nuri, Zhang, Qimeng, Kim, Jun Gi, Shin Jin Kang, Kim, Chang Hun
Publicat:
Public Library of Science
Matèries:
Accés en línia:Citation/Abstract
Full Text
Full Text - PDF
Etiquetes: Afegir etiqueta
Sense etiquetes, Sigues el primer a etiquetar aquest registre!

MARC

LEADER 00000nab a2200000uu 4500
001 1847562984
003 UK-CbPIL
022 |a 1932-6203 
024 7 |a 10.1371/journal.pone.0167153  |2 doi 
035 |a 1847562984 
045 2 |b d20161201  |b d20161231 
084 |a 174835  |2 nlm 
100 1 |a Young Bin Kim 
245 1 |a Predicting Virtual World User Population Fluctuations with Deep Learning 
260 |b Public Library of Science  |c Dec 2016 
513 |a Journal Article 
520 3 |a This paper proposes a system for predicting increases in virtual world user actions. The virtual world user population is a very important aspect of these worlds; however, methods for predicting fluctuations in these populations have not been well documented. Therefore, we attempt to predict changes in virtual world user populations with deep learning, using easily accessible online data, including formal datasets from Google Trends, Wikipedia, and online communities, as well as informal datasets collected from online forums. We use the proposed system to analyze the user population of EVE Online, one of the largest virtual worlds. 
610 4 |a Korea University Wikipedia Radio Communications 
653 |a Economic 
653 |a Research 
653 |a Radio communications 
653 |a International conferences 
653 |a Population 
653 |a Computer & video games 
653 |a Internet 
653 |a Trends 
653 |a Signal processing 
653 |a Interdisciplinary aspects 
653 |a Researchers 
653 |a Virtual communities 
653 |a Community 
653 |a Fluctuations 
653 |a Use statistics 
653 |a Populations 
653 |a Studies 
653 |a Information processing 
653 |a Data collection 
653 |a Acoustics 
653 |a Economic activity 
653 |a Deep learning 
653 |a Datasets 
700 1 |a Park, Nuri 
700 1 |a Zhang, Qimeng 
700 1 |a Kim, Jun Gi 
700 1 |a Shin Jin Kang 
700 1 |a Kim, Chang Hun 
773 0 |t PLoS One  |g vol. 11, no. 12 (Dec 2016), p. e0167153 
786 0 |d ProQuest  |t Health & Medical Collection 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/1847562984/abstract/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/1847562984/fulltext/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/1847562984/fulltextPDF/embedded/6A8EOT78XXH2IG52?source=fedsrch