MARC

LEADER 00000nab a2200000uu 4500
001 1885092549
003 UK-CbPIL
022 |a 0021-9290 
022 |a 1873-2380 
024 7 |a 10.1016/j.jbiomech.2016.11.026  |2 doi 
035 |a 1885092549 
045 2 |b d20170101  |b d20170123 
084 |a 170337  |2 nlm 
100 1 |a Rotman, Oren M 
245 1 |a Pressure drop and arterial compliance - Two arterial parameters in one measurement 
260 |b Elsevier Limited  |c 2017 
513 |a Journal Article 
520 3 |a Coronary artery pressure-drop and distensibility (compliance) are two major, seemingly unrelated, parameters in the cardiovascular clinical setting, which are indicative of coronary arteries patency and atherosclerosis severity. While pressure drop is related to flow, and therefore serves as a functional indicator of a stenosis severity, the arterial distensibility is indicative of the arterial stiffness, and hence the arterial wall composition. In the present study, we hypothesized that local pressure drops are dependent on the arterial distensibility, and hence can provide information on both indices. The clinical significance is that a single measurement of pressure drop could potentially provide both functional and bio-mechanical metrics of lesions, and thus assist in real-time decision making prior to stenting. The goal of the current study was to set the basis for understanding this relationship, and define the accuracy and sensitivity required from the pressure measurement system. The investigation was performed using numerical fluid-structure interaction (FSI) simulations, validated experimentally using our high accuracy differential pressure measurement system. Simplified silicone mock coronary arteries with zero to intermediate size stenoses were used, and various combinations of arterial distensibility, diameter, and flow rate were simulated. Results of hyperemic flow cases were also compared to fractional flow reserve (FFR). The results indicate the potential clinical superiority of a high accuracy pressure drop-based parameter over FFR, by: (i) being more lesion-specific, (ii) the possibility to circumvent the FFR dependency on pharmacologically-induced hyperemia, and, (iii) by providing both functional and biomechanical lesion-specific information. 
653 |a Cardiovascular disease 
653 |a Intubation 
653 |a Acute coronary syndromes 
653 |a Stents 
653 |a Turbulence models 
653 |a Medical imaging 
653 |a Fluid-structure interaction 
653 |a Boundary conditions 
653 |a Atherosclerosis 
653 |a Catheters 
653 |a Coronary vessels 
653 |a Hyperemia 
653 |a Ischemia 
653 |a Angiography 
653 |a Stroke 
653 |a Computer applications 
653 |a Convergence 
653 |a Coronary artery 
653 |a Arteriosclerosis 
653 |a Glycerol 
653 |a Blood pressure 
653 |a Ultrasound 
653 |a Decision making 
653 |a Motivation 
653 |a Heart diseases 
653 |a Implants 
653 |a Fluid flow 
653 |a Data processing 
653 |a Catheterization 
653 |a Temperature effects 
653 |a Mathematical models 
653 |a Scaling 
653 |a Mechanical properties 
653 |a Compliance 
653 |a Feasibility studies 
653 |a Lesions 
653 |a Differential pressure 
653 |a Real time 
653 |a Pressure drop 
653 |a Pressure dependence 
653 |a Accuracy 
653 |a Pressure measurement 
653 |a Biomechanics 
653 |a Parameters 
700 1 |a Zaretsky, Uri 
700 1 |a Shitzer, Avraham 
700 1 |a Einav, Shmuel 
773 0 |t Journal of Biomechanics  |g vol. 50 (2017), p. 130 
786 0 |d ProQuest  |t Health & Medical Collection 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/1885092549/abstract/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/1885092549/fulltext/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/1885092549/fulltextPDF/embedded/L8HZQI7Z43R0LA5T?source=fedsrch