Forecasting electric vehicles sales with univariate and multivariate time series models: The case of China

Furkejuvvon:
Bibliográfalaš dieđut
Publikašuvnnas:PLoS One vol. 12, no. 5 (May 2017), p. e0176729
Váldodahkki: Zhang, Yong
Eará dahkkit: Miner, Zhong, Geng, Nana, Jiang, Yunjian
Almmustuhtton:
Public Library of Science
Fáttát:
Liŋkkat:Citation/Abstract
Full Text
Full Text - PDF
Fáddágilkorat: Lasit fáddágilkoriid
Eai fáddágilkorat, Lasit vuosttaš fáddágilkora!

MARC

LEADER 00000nab a2200000uu 4500
001 1893857787
003 UK-CbPIL
022 |a 1932-6203 
024 7 |a 10.1371/journal.pone.0176729  |2 doi 
035 |a 1893857787 
045 2 |b d20170501  |b d20170531 
084 |a 174835  |2 nlm 
100 1 |a Zhang, Yong 
245 1 |a Forecasting electric vehicles sales with univariate and multivariate time series models: The case of China 
260 |b Public Library of Science  |c May 2017 
513 |a Journal Article 
520 3 |a The market demand for electric vehicles (EVs) has increased in recent years. Suitable models are necessary to understand and forecast EV sales. This study presents a singular spectrum analysis (SSA) as a univariate time-series model and vector autoregressive model (VAR) as a multivariate model. Empirical results suggest that SSA satisfactorily indicates the evolving trend and provides reasonable results. The VAR model, which comprised exogenous parameters related to the market on a monthly basis, can significantly improve the prediction accuracy. The EV sales in China, which are categorized into battery and plug-in EVs, are predicted in both short term (up to December 2017) and long term (up to 2020), as statistical proofs of the growth of the Chinese EV industry. 
651 4 |a China 
653 |a Gasoline 
653 |a Bioinformatics 
653 |a Computer applications 
653 |a Optimal control 
653 |a Anxiety 
653 |a Electricity 
653 |a Air pollution 
653 |a Bayesian analysis 
653 |a Cost analysis 
653 |a Mapping 
653 |a Economic 
653 |a Vehicles 
653 |a Information processing 
653 |a Energy 
653 |a Environmental effects 
653 |a Statistics 
653 |a Fuels 
653 |a Finance 
653 |a Automobiles 
653 |a Electric vehicles 
653 |a Accounting 
653 |a Passengers 
653 |a Spectrum analysis 
653 |a Indicators 
653 |a Transportation 
653 |a Economics 
653 |a Statistical analysis 
653 |a Time series 
653 |a Energy policy 
653 |a Data processing 
653 |a Computer programs 
653 |a Informatics 
653 |a Applied statistics 
653 |a Diffusion 
653 |a Noise measurement 
653 |a Carbon dioxide 
653 |a Noise reduction 
653 |a Models 
653 |a Mathematical models 
653 |a Couplings 
653 |a Neural networks 
653 |a Rainfall 
653 |a Vehicle emissions 
653 |a Sales 
653 |a Alternative fuel vehicles 
653 |a Markets 
653 |a Forecasting 
700 1 |a Miner, Zhong 
700 1 |a Geng, Nana 
700 1 |a Jiang, Yunjian 
773 0 |t PLoS One  |g vol. 12, no. 5 (May 2017), p. e0176729 
786 0 |d ProQuest  |t Health & Medical Collection 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/1893857787/abstract/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/1893857787/fulltext/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/1893857787/fulltextPDF/embedded/L8HZQI7Z43R0LA5T?source=fedsrch