Neocortical activity is stimulus- and scale-invariant

Guardado en:
Detalles Bibliográficos
Publicado en:PLoS One vol. 12, no. 5 (May 2017), p. e0177396
Autor principal: Karimipanah, Yahya
Otros Autores: Ma, Zhengyu, Jae-eun Kang Miller, Yuste, Rafael, Wessel, Ralf
Publicado:
Public Library of Science
Materias:
Acceso en línea:Citation/Abstract
Full Text
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 1897668437
003 UK-CbPIL
022 |a 1932-6203 
024 7 |a 10.1371/journal.pone.0177396  |2 doi 
035 |a 1897668437 
045 2 |b d20170501  |b d20170531 
084 |a 174835  |2 nlm 
100 1 |a Karimipanah, Yahya 
245 1 |a Neocortical activity is stimulus- and scale-invariant 
260 |b Public Library of Science  |c May 2017 
513 |a Journal Article 
520 3 |a Mounting evidence supports the hypothesis that the cortex operates near a critical state, defined as the transition point between order (large-scale activity) and disorder (small-scale activity). This criticality is manifested by power law distribution of the size and duration of spontaneous cascades of activity, which are referred as neuronal avalanches. The existence of such neuronal avalanches has been confirmed by several studies both in vitro and in vivo, among different species and across multiple spatial scales. However, despite the prevalence of scale free activity, still very little is known concerning whether and how the scale-free nature of cortical activity is altered during external stimulation. To address this question, we performed in vivo two-photon population calcium imaging of layer 2/3 neurons in primary visual cortex of behaving mice during visual stimulation and conducted statistical analyses on the inferred spike trains. Our investigation for each mouse and condition revealed power law distributed neuronal avalanches, and irregular spiking individual neurons. Importantly, both the avalanche and the spike train properties remained largely unchanged for different stimuli, while the cross-correlation structure varied with stimuli. Our results establish that microcircuits in the visual cortex operate near the critical regime, while rearranging functional connectivity in response to varying sensory inputs. 
610 4 |a Columbia University 
651 4 |a Missouri 
651 4 |a New York 
651 4 |a United States--US 
653 |a Neurons 
653 |a In vitro methods and tests 
653 |a Visual perception 
653 |a Science 
653 |a Landslides 
653 |a Brain 
653 |a Neurosciences 
653 |a Visual stimuli 
653 |a Cascades 
653 |a In vivo methods and tests 
653 |a Rodents 
653 |a Avalanches 
653 |a Population (statistical) 
653 |a Laboratory animals 
653 |a Physics 
653 |a Journals 
653 |a Surgery 
653 |a Power law 
653 |a Experiments 
653 |a Calcium imaging 
653 |a Firing pattern 
653 |a Pain 
653 |a Stimulation 
653 |a Neuroimaging 
653 |a Neural networks 
653 |a Visual cortex 
653 |a Spatial distribution 
653 |a Statistical analysis 
653 |a Somatosensory cortex 
700 1 |a Ma, Zhengyu 
700 1 |a Jae-eun Kang Miller 
700 1 |a Yuste, Rafael 
700 1 |a Wessel, Ralf 
773 0 |t PLoS One  |g vol. 12, no. 5 (May 2017), p. e0177396 
786 0 |d ProQuest  |t Health & Medical Collection 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/1897668437/abstract/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/1897668437/fulltext/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/1897668437/fulltextPDF/embedded/6A8EOT78XXH2IG52?source=fedsrch