MARC

LEADER 00000nab a2200000uu 4500
001 1900214016
003 UK-CbPIL
022 |a 1932-6203 
024 7 |a 10.1371/journal.pone.0177359  |2 doi 
035 |a 1900214016 
045 2 |b d20170501  |b d20170531 
084 |a 174835  |2 nlm 
100 1 |a Benozzo, Danilo 
245 1 |a Bayesian estimation of directed functional coupling from brain recordings 
260 |b Public Library of Science  |c May 2017 
513 |a Journal Article 
520 3 |a In many fields of science, there is the need of assessing the causal influences among time series. Especially in neuroscience, understanding the causal interactions between brain regions is of primary importance. A family of measures have been developed from the parametric implementation of the Granger criteria of causality based on the linear autoregressive modelling of the signals. We propose a new Bayesian method for linear model identification with a structured prior (GMEP) aiming to apply it as linear regression method in the context of the parametric Granger causal inference. GMEP assumes a Gaussian scale mixture distribution for the group sparsity prior and it enables flexible definition of the coefficient groups. Approximate posterior inference is achieved using Expectation Propagation for both the linear coefficients and the hyperparameters. GMEP is investigated both on simulated data and on empirical fMRI data in which we show how adding information on the sparsity structure of the coefficients positively improves the inference process. In the same simulation framework, GMEP is compared with others standard linear regression methods. Moreover, the causal inferences derived from GMEP estimates and from a standard Granger method are compared across simulated datasets of different dimensionality, density connection and level of noise. GMEP allows a better model identification and consequent causal inference when prior knowledge on the sparsity structure are integrated in the structured prior. 
610 4 |a University of Trento 
651 4 |a Italy 
653 |a Functional magnetic resonance imaging 
653 |a Bioinformatics 
653 |a Signal processing 
653 |a Cognition 
653 |a Brain 
653 |a Image processing 
653 |a Electroencephalography 
653 |a Asymptotic properties 
653 |a Machine learning 
653 |a Entropy 
653 |a Pattern recognition 
653 |a Propagation 
653 |a Asymptotic methods 
653 |a Bayesian analysis 
653 |a EEG 
653 |a Mean square values 
653 |a Classification 
653 |a Autoregressive processes 
653 |a Terminology 
653 |a Inference 
653 |a Regression analysis 
653 |a Methods 
653 |a Information processing 
653 |a Autoregressive models 
653 |a Neuroimaging 
653 |a Uniqueness 
653 |a Visual perception 
653 |a Artificial intelligence 
653 |a Data processing 
653 |a Matrices (mathematics) 
653 |a Information systems 
653 |a Independent variables 
653 |a Statistical analysis 
653 |a Normality 
653 |a Learning algorithms 
653 |a Stochastic processes 
653 |a Coefficients 
653 |a Brain mapping 
653 |a Probability theory 
653 |a Nervous system 
653 |a Mathematical models 
653 |a Neural networks 
653 |a Neural coding 
653 |a Noise levels 
700 1 |a Jylänki, Pasi 
700 1 |a Olivetti, Emanuele 
700 1 |a Avesani, Paolo 
700 1 |a Marcel A J van Gerven 
773 0 |t PLoS One  |g vol. 12, no. 5 (May 2017), p. e0177359 
786 0 |d ProQuest  |t Health & Medical Collection 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/1900214016/abstract/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/1900214016/fulltext/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/1900214016/fulltextPDF/embedded/6A8EOT78XXH2IG52?source=fedsrch