Simulating three-dimensional dynamics of flexible fibers in a ring spinning triangle: chitosan and cotton fibers

Guardado en:
Detalles Bibliográficos
Publicado en:Textile Research Journal vol. 87, no. 11 (Jul 2017), p. 1403
Autor principal: Guo, Hui Fen
Otros Autores: Lam, Ngan Yi Kitty, Yang, Chenxiao, Li, Li
Publicado:
Sage Publications Ltd.
Materias:
Acceso en línea:Citation/Abstract
Full Text
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 1908231849
003 UK-CbPIL
022 |a 0040-5175 
022 |a 1746-7748 
024 7 |a 10.1177/0040517516654106  |2 doi 
035 |a 1908231849 
045 2 |b d20170701  |b d20170731 
084 |a 47309  |2 nlm 
100 1 |a Guo, Hui Fen  |u The Hong Kong Polytechnic University, Hong Kong 
245 1 |a Simulating three-dimensional dynamics of flexible fibers in a ring spinning triangle: chitosan and cotton fibers 
260 |b Sage Publications Ltd.  |c Jul 2017 
513 |a Journal Article 
520 3 |a A three-dimensional particle-level simulation method is developed to simulate fiber dynamics in the ring spinning triangle. The fiber is modeled as a chain of beads connected through massless rods, and its flexibility is defined by the stretching, bending and twisting displacements. As the application of the proposed approach, the effects of the chitosan (CS)/cotton (CT) fiber initial position and length on fiber motion and yarn properties are discussed. The deflections of CS fibers along the roller axis are larger compared with those of CT fibers, which will lead to CS migrating outwards in CS/CT blended yarn. The short CS fibers (22 mm) will move toward the top roller surface and shift quickly out of the roller nip, and thus yarn strength is lower. The tailing end of the longest CS fiber (46 mm) will drift off the roller nip, which makes little or no contribution to the yarn strength. For 38 mm length CS fiber, it moves toward the bottom roller surface and is bound into the roller nip, and thus can produce the highest tenacity CS/CT blended yarns. The simulation results agree with the spinning experimental data reported by other researchers. 
653 |a Environmental 
653 |a Textile fibers 
653 |a Ring spinning 
653 |a Fluid-structure interaction 
653 |a Chains 
653 |a Yarns 
653 |a Twisting 
653 |a Computer simulation 
653 |a Rods 
653 |a Data processing 
653 |a Stretching 
653 |a Cotton 
653 |a Chitosan 
653 |a Studies 
653 |a Fibers 
653 |a Dynamics 
653 |a Displacement 
653 |a Flexibility 
653 |a Drift 
653 |a Deformation 
653 |a Cotton fibers 
653 |a Tensile strength 
653 |a Atoms & subatomic particles 
653 |a Beads 
653 |a Materials research 
700 1 |a Lam, Ngan Yi Kitty  |u The Hong Kong Polytechnic University, Hong Kong 
700 1 |a Yang, Chenxiao  |u The Hong Kong Polytechnic University, Hong Kong 
700 1 |a Li, Li  |u The Hong Kong Polytechnic University, Hong Kong 
773 0 |t Textile Research Journal  |g vol. 87, no. 11 (Jul 2017), p. 1403 
786 0 |d ProQuest  |t Science Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/1908231849/abstract/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/1908231849/fulltext/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/1908231849/fulltextPDF/embedded/L8HZQI7Z43R0LA5T?source=fedsrch