Comparison of manifold learning algorithms used in FSI data interpolation of curved surfaces

Guardat en:
Dades bibliogràfiques
Publicat a:Multidiscipline Modeling in Materials and Structures vol. 13, no. 2 (2017), p. 217-261
Autor principal: Liu, Ming-min
Altres autors: Li, LZ, Zhang, Jun
Publicat:
Emerald Group Publishing Limited
Matèries:
Accés en línia:Citation/Abstract
Full Text
Full Text - PDF
Etiquetes: Afegir etiqueta
Sense etiquetes, Sigues el primer a etiquetar aquest registre!

MARC

LEADER 00000nab a2200000uu 4500
001 1926496945
003 UK-CbPIL
022 |a 1573-6105 
022 |a 1573-6113 
024 7 |a 10.1108/MMMS-07-2016-0032  |2 doi 
035 |a 1926496945 
045 2 |b d20170401  |b d20170630 
084 |a 173634  |2 nlm 
100 1 |a Liu, Ming-min 
245 1 |a Comparison of manifold learning algorithms used in FSI data interpolation of curved surfaces 
260 |b Emerald Group Publishing Limited  |c 2017 
513 |a Journal Article 
520 3 |a Purpose The purpose of this paper is to discuss a data interpolation method of curved surfaces from the point of dimension reduction and manifold learning. Design/methodology/approach Instead of transmitting data of curved surfaces in 3D space directly, the method transmits data by unfolding 3D curved surfaces into 2D planes by manifold learning algorithms. The similarity between surface unfolding and manifold learning is discussed. Projection ability of several manifold learning algorithms is investigated to unfold curved surface. The algorithms' efficiency and their influences on the accuracy of data transmission are investigated by three examples. Findings It is found that the data interpolations using manifold learning algorithms LLE, HLLE and LTSA are efficient and accurate. Originality/value The method can improve the accuracies of coupling data interpolation and fluid-structure interaction simulation involving curved surfaces. 
653 |a Principal components analysis 
653 |a Partial differential equations 
653 |a Fluid-structure interaction 
653 |a Fault diagnosis 
653 |a Algorithms 
653 |a Interpolation 
653 |a Neural networks 
653 |a Planes 
653 |a Information processing 
653 |a Manifolds (mathematics) 
653 |a Data transmission 
653 |a Engineering 
653 |a Methods 
653 |a Machine learning 
653 |a Stress concentration 
653 |a Mathematical problems 
653 |a Learning algorithms 
653 |a Computer simulation 
700 1 |a Li, LZ 
700 1 |a Zhang, Jun 
773 0 |t Multidiscipline Modeling in Materials and Structures  |g vol. 13, no. 2 (2017), p. 217-261 
786 0 |d ProQuest  |t Materials Science Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/1926496945/abstract/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/1926496945/fulltext/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/1926496945/fulltextPDF/embedded/L8HZQI7Z43R0LA5T?source=fedsrch