Population activity structure of excitatory and inhibitory neurons

Guardado en:
Detalles Bibliográficos
Publicado en:PLoS One vol. 12, no. 8 (Aug 2017), p. e0181773
Autor principal: Bittner, Sean R
Otros Autores: Williamson, Ryan C, Snyder, Adam C, Litwin-Kumar, Ashok, Doiron, Brent, Chase, Steven M, Smith, Matthew A, Yu, Byron M
Publicado:
Public Library of Science
Materias:
Acceso en línea:Citation/Abstract
Full Text
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 1930441969
003 UK-CbPIL
022 |a 1932-6203 
024 7 |a 10.1371/journal.pone.0181773  |2 doi 
035 |a 1930441969 
045 2 |b d20170801  |b d20170831 
084 |a 174835  |2 nlm 
100 1 |a Bittner, Sean R 
245 1 |a Population activity structure of excitatory and inhibitory neurons 
260 |b Public Library of Science  |c Aug 2017 
513 |a Journal Article 
520 3 |a Many studies use population analysis approaches, such as dimensionality reduction, to characterize the activity of large groups of neurons. To date, these methods have treated each neuron equally, without taking into account whether neurons are excitatory or inhibitory. We studied population activity structure as a function of neuron type by applying factor analysis to spontaneous activity from spiking networks with balanced excitation and inhibition. Throughout the study, we characterized population activity structure by measuring its dimensionality and the percentage of overall activity variance that is shared among neurons. First, by sampling only excitatory or only inhibitory neurons, we found that the activity structures of these two populations in balanced networks are measurably different. We also found that the population activity structure is dependent on the ratio of excitatory to inhibitory neurons sampled. Finally we classified neurons from extracellular recordings in the primary visual cortex of anesthetized macaques as putative excitatory or inhibitory using waveform classification, and found similarities with the neuron type-specific population activity structure of a balanced network with excitatory clustering. These results imply that knowledge of neuron type is important, and allows for stronger statistical tests, when interpreting population activity structure. 
610 4 |a University of Pittsburgh Carnegie Mellon University 
651 4 |a Pittsburgh Pennsylvania 
651 4 |a Pennsylvania 
651 4 |a New York 
651 4 |a United States--US 
653 |a Neurons 
653 |a Population 
653 |a Visual perception 
653 |a Statistical tests 
653 |a Factor analysis 
653 |a Neurosciences 
653 |a Biomedical engineering 
653 |a Statistical analysis 
653 |a Cognition & reasoning 
653 |a Population (statistical) 
653 |a Excitation 
653 |a Social 
653 |a Clustering 
653 |a Classification 
653 |a Computer engineering 
653 |a Firing pattern 
653 |a Methods 
653 |a Structure-function relationships 
653 |a Population studies 
653 |a Visual cortex 
700 1 |a Williamson, Ryan C 
700 1 |a Snyder, Adam C 
700 1 |a Litwin-Kumar, Ashok 
700 1 |a Doiron, Brent 
700 1 |a Chase, Steven M 
700 1 |a Smith, Matthew A 
700 1 |a Yu, Byron M 
773 0 |t PLoS One  |g vol. 12, no. 8 (Aug 2017), p. e0181773 
786 0 |d ProQuest  |t Health & Medical Collection 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/1930441969/abstract/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/1930441969/fulltext/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/1930441969/fulltextPDF/embedded/6A8EOT78XXH2IG52?source=fedsrch