Developments in Landsat Land Cover Classification Methods: A Review

Պահպանված է:
Մատենագիտական մանրամասներ
Հրատարակված է:Remote Sensing vol. 9, no. 9 (2017), p. 967
Հիմնական հեղինակ: Phiri, Darius
Այլ հեղինակներ: Morgenroth, Justin
Հրապարակվել է:
MDPI AG
Խորագրեր:
Առցանց հասանելիություն:Citation/Abstract
Full Text - PDF
Ցուցիչներ: Ավելացրեք ցուցիչ
Չկան պիտակներ, Եղեք առաջինը, ով նշում է այս գրառումը!

MARC

LEADER 00000nab a2200000uu 4500
001 1952047402
003 UK-CbPIL
022 |a 2072-4292 
024 7 |a 10.3390/rs9090967  |2 doi 
035 |a 1952047402 
045 2 |b d20170101  |b d20171231 
084 |a 231556  |2 nlm 
100 1 |a Phiri, Darius 
245 1 |a Developments in Landsat Land Cover Classification Methods: A Review 
260 |b MDPI AG  |c 2017 
513 |a Journal Article 
520 3 |a Land cover classification of Landsat images is one of the most important applications developed from Earth observation satellites. The last four decades were marked by different developments in land cover classification methods of Landsat images. This paper reviews the developments in land cover classification methods for Landsat images from the 1970s to date and highlights key ways to optimize analysis of Landsat images in order to attain the desired results. This review suggests that the development of land cover classification methods grew alongside the launches of a new series of Landsat sensors and advancements in computer science. Most classification methods were initially developed in the 1970s and 1980s; however, many advancements in specific classifiers and algorithms have occurred in the last decade. The first methods of land cover classification to be applied to Landsat images were visual analyses in the early 1970s, followed by unsupervised and supervised pixel-based classification methods using maximum likelihood, K-means and Iterative Self-Organizing Data Analysis Technique (ISODAT) classifiers. After 1980, other methods such as sub-pixel, knowledge-based, contextual-based, object-based image analysis (OBIA) and hybrid approaches became common in land cover classification. Attaining the best classification results with Landsat images demands particular attention to the specifications of each classification method such as selecting the right training samples, choosing the appropriate segmentation scale for OBIA, pre-processing calibration, choosing the right classifier and using suitable Landsat images. All these classification methods applied on Landsat images have strengths and limitations. Most studies have reported the superior performance of OBIA on different landscapes such as agricultural areas, forests, urban settlements and wetlands; however, OBIA has challenges such as selecting the optimal segmentation scale, which can result in over or under segmentation, and the low spatial resolution of Landsat images. Other classification methods have the potential to produce accurate classification results when appropriate procedures are followed. More research is needed on the application of hybrid classifiers as they are considered more complex methods for land cover classification. 
653 |a Visual perception 
653 |a Landsat 
653 |a Satellite imagery 
653 |a Image processing 
653 |a Spatial discrimination 
653 |a Classification 
653 |a Land cover 
653 |a Satellites 
653 |a Landsat satellites 
653 |a Data processing 
653 |a Data analysis 
653 |a Image analysis 
653 |a Pixels 
653 |a Image segmentation 
653 |a Iterative methods 
653 |a Spatial resolution 
653 |a Optimization 
653 |a Classifiers 
653 |a Image classification 
653 |a Satellite observation 
653 |a Remote sensing 
653 |a Landscape 
653 |a Knowledge bases (artificial intelligence) 
653 |a Agricultural land 
653 |a Urban agriculture 
700 1 |a Morgenroth, Justin 
773 0 |t Remote Sensing  |g vol. 9, no. 9 (2017), p. 967 
786 0 |d ProQuest  |t Advanced Technologies & Aerospace Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/1952047402/abstract/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/1952047402/fulltextPDF/embedded/L8HZQI7Z43R0LA5T?source=fedsrch