MAINTENANCE EFFORT PREDICTION MODEL USING ASPECT-ORIENTED COGNITIVE COMPLEXITY METRICS

Guardado en:
Bibliografiske detaljer
Udgivet i:International Journal of Advanced Research in Computer Science vol. 8, no. 8 (Sep 2017), p. 278
Hovedforfatter: G Arockia Sahaya Sheela
Andre forfattere: Aloysius, A
Udgivet:
International Journal of Advanced Research in Computer Science
Fag:
Online adgang:Citation/Abstract
Full Text - PDF
Tags: Tilføj Tag
Ingen Tags, Vær først til at tagge denne postø!

MARC

LEADER 00000nab a2200000uu 4500
001 1953784550
003 UK-CbPIL
022 |a 0976-5697 
024 7 |a 10.26483/ijarcs.v8i8.4637  |2 doi 
035 |a 1953784550 
045 2 |b d20170901  |b d20170930 
084 |a 198728  |2 nlm 
100 1 |a G Arockia Sahaya Sheela 
245 1 |a MAINTENANCE EFFORT PREDICTION MODEL USING ASPECT-ORIENTED COGNITIVE COMPLEXITY METRICS 
260 |b International Journal of Advanced Research in Computer Science  |c Sep 2017 
513 |a Journal Article 
520 3 |a Software development is a multifaceted process. It is challenging to define or measure software qualities and quantities and to determine a valid and concurrent measurement metric. In software development, a metric is the measurement of a particular characteristic of a program's performance or efficiency.The goal of software metrics is to improve understanding of a product or process. Aspect Oriented Programming (AOP) extends the traditional objectoriented programming (OOP) model to improve code reuse across different object hierarchies. AOP can be used with object oriented programming. AspectJ is an implementation of aspectoriented programming for Java. Software maintenance is the most desired, but most elusive and difficult task in software engineering. The cost of maintenance is as high as 60% to 80% of the total cost of the software. So, plenty of this project are going on in software maintenance. Though, Aspectoriented paradigm has made it easier, it remains the critical hotspot of research. One way of grappling with the maintenance problem, is to use the complexity metrics. Many studies were made to understand the relationship among complexity metrics, cognition, and maintenance. This paper wrestles with four newly proposed objectoriented cognitive complexity metrics to develop maintenance effort prediction models through various statistical techniques.Empirical study designs are made with ANOVA and experimented.Discussion on results proves the maintenance effort prediction models are more robust, more accurate, and can be employed to estimate the maintenance effort. 
653 |a Object oriented programming 
653 |a Modularity 
653 |a Mathematical models 
653 |a Maintenance 
653 |a Software engineering 
653 |a Complexity 
653 |a Code reuse 
653 |a Software development 
653 |a Hierarchies 
653 |a Cognition 
653 |a Computer programming 
653 |a Java 
700 1 |a Aloysius, A 
773 0 |t International Journal of Advanced Research in Computer Science  |g vol. 8, no. 8 (Sep 2017), p. 278 
786 0 |d ProQuest  |t Advanced Technologies & Aerospace Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/1953784550/abstract/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/1953784550/fulltextPDF/embedded/L8HZQI7Z43R0LA5T?source=fedsrch