Effect of wavelength and beam width on penetration in light-tissue interaction using computational methods

Guardado en:
Detalles Bibliográficos
Publicado en:Lasers in Medical Science vol. 32, no. 8 (Nov 2017), p. 1909
Autor principal: Ash, Caerwyn
Otros Autores: Dubec, Michael, Donne, Kelvin, Bashford, Tim
Publicado:
Springer Nature B.V.
Materias:
Acceso en línea:Citation/Abstract
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 1953877257
003 UK-CbPIL
022 |a 0268-8921 
022 |a 1435-604X 
024 7 |a 10.1007/s10103-017-2317-4  |2 doi 
035 |a 1953877257 
045 2 |b d20171101  |b d20171130 
084 |a 65762  |2 nlm 
100 1 |a Ash, Caerwyn  |u School of Applied Computing, University of Wales Trinity Saint David, Swansea, UK 
245 1 |a Effect of wavelength and beam width on penetration in light-tissue interaction using computational methods 
260 |b Springer Nature B.V.  |c Nov 2017 
513 |a Journal Article 
520 3 |a Penetration depth of ultraviolet, visible light and infrared radiation in biological tissue has not previously been adequately measured. Risk assessment of typical intense pulsed light and laser intensities, spectral characteristics and the subsequent chemical, physiological and psychological effects of such outputs on vital organs as consequence of inappropriate output use are examined. This technical note focuses on wavelength, illumination geometry and skin tone and their effect on the energy density (fluence) distribution within tissue. Monte Carlo modelling is one of the most widely used stochastic methods for the modelling of light transport in turbid biological media such as human skin. Using custom Monte Carlo simulation software of a multi-layered skin model, fluence distributions are produced for various non-ionising radiation combinations. Fluence distributions were analysed using Matlab mathematical software. Penetration depth increases with increasing wavelength with a maximum penetration depth of 5378 μm calculated. The calculations show that a 10-mm beam width produces a fluence level at target depths of 1–3 mm equal to 73–88% (depending on depth) of the fluence level at the same depths produced by an infinitely wide beam of equal incident fluence. Meaning little additional penetration is achieved with larger spot sizes. Fluence distribution within tissue and thus the treatment efficacy depends upon the illumination geometry and wavelength. To optimise therapeutic techniques, light-tissue interactions must be thoroughly understood and can be greatly supported by the use of mathematical modelling techniques. 
653 |a Skin 
653 |a Infrared radiation 
653 |a Flux density 
653 |a Mathematical analysis 
653 |a Multilayers 
653 |a Luminous intensity 
653 |a Illumination 
653 |a Computer applications 
653 |a Physiological effects 
653 |a Risk assessment 
653 |a Organs 
653 |a Computer simulation 
653 |a Fluence 
653 |a Monte Carlo simulation 
653 |a Computer programs 
653 |a Wavelength 
653 |a Penetration depth 
653 |a Ionizing radiation 
653 |a Mathematical models 
653 |a Psychological effects 
653 |a Light 
653 |a I.R. radiation 
653 |a Combinations (mathematics) 
653 |a Simulation 
653 |a Luminance distribution 
653 |a Energy distribution 
653 |a Ultraviolet radiation 
700 1 |a Dubec, Michael  |u The Christie NHS Foundation Trust, Manchester, UK 
700 1 |a Donne, Kelvin  |u School of Applied Computing, University of Wales Trinity Saint David, Swansea, UK 
700 1 |a Bashford, Tim  |u School of Applied Computing, University of Wales Trinity Saint David, Swansea, UK 
773 0 |t Lasers in Medical Science  |g vol. 32, no. 8 (Nov 2017), p. 1909 
786 0 |d ProQuest  |t Health & Medical Collection 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/1953877257/abstract/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/1953877257/fulltextPDF/embedded/6A8EOT78XXH2IG52?source=fedsrch