Optimality Conditions and Geometric Properties of a Linear Multilevel Programming Problem with Dominated Objective Functions

Guardado en:
Detalles Bibliográficos
Publicado en:Journal of Optimization Theory and Applications vol. 123, no. 2 (Nov 2004), p. 409
Autor principal: Ruan, G Z
Otros Autores: Wang, S Y, Yamamoto, Y, Zhu, S S
Publicado:
Springer Nature B.V.
Materias:
Acceso en línea:Citation/Abstract
Full Text
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Resumen:In this paper, a model of a linear multilevel programming problem with dominated objective functions (LMPPD(l)) is proposed, where multiple reactions of the lower levels do not lead to any uncertainty in the upper-level decision making. Under the assumption that the constrained set is nonempty and bounded, a necessary optimality condition is obtained. Two types of geometric properties of the solution sets are studied. It is demonstrated that the feasible set of LMPPD(l) is neither necessarily composed of faces of the constrained set nor necessarily connected. These properties are different from the existing theoretical results for linear multilevel programming problems.
ISSN:0022-3239
1573-2878
DOI:10.1007/s10957-004-5156-y
Fuente:ABI/INFORM Global