Globally Convergent Interior-Point Algorithm for Nonlinear Programming

Guardado en:
Detalles Bibliográficos
Publicado en:Journal of Optimization Theory and Applications vol. 125, no. 3 (Jun 2005), p. 497
Autor principal: Akrotirianakis, I
Otros Autores: Rustem, B
Publicado:
Springer Nature B.V.
Materias:
Acceso en línea:Citation/Abstract
Full Text
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Resumen:This paper presents a primal-dual interior-point algorithm for solving general constrained nonlinear programming problems. The inequality constraints are incorporated into the objective function by means of a logarithmic barrier function. Also, satisfaction of the equality constraints is enforced through the use of an adaptive quadratic penalty function. The penalty parameter is determined using a strategy that ensures a descent property for a merit function. Global convergence of the algorithm is achieved through the monotonic decrease of a merit function. Finally, extensive computational results show that the algorithm can solve large and difficult problems in an efficient and robust way.
ISSN:0022-3239
1573-2878
DOI:10.1007/s10957-005-2086-2
Fuente:ABI/INFORM Global