A computational study on outliers in world music

সংরক্ষণ করুন:
গ্রন্থ-পঞ্জীর বিবরন
প্রকাশিত:PLoS One vol. 12, no. 12 (Dec 2017), p. e0189399
প্রধান লেখক: Panteli, Maria
অন্যান্য লেখক: Benetos, Emmanouil, Dixon, Simon
প্রকাশিত:
Public Library of Science
বিষয়গুলি:
অনলাইন ব্যবহার করুন:Citation/Abstract
Full Text
Full Text - PDF
ট্যাগগুলো: ট্যাগ যুক্ত করুন
কোনো ট্যাগ নেই, প্রথমজন হিসাবে ট্যাগ করুন!

MARC

LEADER 00000nab a2200000uu 4500
001 1978297573
003 UK-CbPIL
022 |a 1932-6203 
024 7 |a 10.1371/journal.pone.0189399  |2 doi 
035 |a 1978297573 
045 2 |b d20171201  |b d20171231 
084 |a 174835  |2 nlm 
100 1 |a Panteli, Maria 
245 1 |a A computational study on outliers in world music 
260 |b Public Library of Science  |c Dec 2017 
513 |a Journal Article 
520 3 |a The comparative analysis of world music cultures has been the focus of several ethnomusicological studies in the last century. With the advances of Music Information Retrieval and the increased accessibility of sound archives, large-scale analysis of world music with computational tools is today feasible. We investigate music similarity in a corpus of 8200 recordings of folk and traditional music from 137 countries around the world. In particular, we aim to identify music recordings that are most distinct compared to the rest of our corpus. We refer to these recordings as ‘outliers’. We use signal processing tools to extract music information from audio recordings, data mining to quantify similarity and detect outliers, and spatial statistics to account for geographical correlation. Our findings suggest that Botswana is the country with the most distinct recordings in the corpus and China is the country with the most distinct recordings when considering spatial correlation. Our analysis includes a comparison of musical attributes and styles that contribute to the ‘uniqueness’ of the music of each country. 
653 |a Social 
653 |a International conferences 
653 |a Outliers (statistics) 
653 |a Similarity 
653 |a Spatial analysis 
653 |a Computation 
653 |a Music 
653 |a Computer science 
653 |a African music 
653 |a Information retrieval 
653 |a Signal processing 
653 |a Digital music 
653 |a Data analysis 
653 |a Computer applications 
653 |a Statistical analysis 
653 |a World music 
653 |a Sound 
653 |a Data processing 
653 |a Data mining 
653 |a Ethnomusicology 
653 |a Hypotheses 
653 |a Multimedia 
653 |a Studies 
653 |a Methods 
653 |a Audio data 
653 |a Semantics 
653 |a Uniqueness 
653 |a Correlation analysis 
653 |a Feasibility studies 
653 |a Software 
653 |a Comparative analysis 
653 |a Correlation 
653 |a Artificial intelligence 
700 1 |a Benetos, Emmanouil 
700 1 |a Dixon, Simon 
773 0 |t PLoS One  |g vol. 12, no. 12 (Dec 2017), p. e0189399 
786 0 |d ProQuest  |t Health & Medical Collection 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/1978297573/abstract/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/1978297573/fulltext/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/1978297573/fulltextPDF/embedded/6A8EOT78XXH2IG52?source=fedsrch