A neural network based approach for background noise reduction in airborne acoustic emission of a machining process

Gardado en:
Detalles Bibliográficos
Publicado en:Journal of Mechanical Science and Technology vol. 31, no. 7 (Jul 2017), p. 3171
Autor Principal: Zafar, T
Outros autores: Kamal, K, Sheikh, Z, Mathavan, S, Ali, U, Hashmi, H
Publicado:
Springer Nature B.V.
Materias:
Acceso en liña:Citation/Abstract
Full Text - PDF
Etiquetas: Engadir etiqueta
Sen Etiquetas, Sexa o primeiro en etiquetar este rexistro!

MARC

LEADER 00000nab a2200000uu 4500
001 2001518258
003 UK-CbPIL
022 |a 1738-494X 
022 |a 1976-3824 
022 |a 1226-4865 
024 7 |a 10.1007/s12206-017-0606-2  |2 doi 
035 |a 2001518258 
045 2 |b d20170701  |b d20170731 
084 |a 137836  |2 nlm 
100 1 |a Zafar, T  |u National University of Sciences and Technology, Islamabad, Pakistan 
245 1 |a A neural network based approach for background noise reduction in airborne acoustic emission of a machining process 
260 |b Springer Nature B.V.  |c Jul 2017 
513 |a Journal Article 
520 3 |a Tool wear prediction has become an indispensable technique to prevent downtime in manufacturing and production processes. Airborne emission from a machining process using a low-cost microphone may provide a vital signal of tool health. However, the effect of background noise results in anomaly in data that may lead to wrong prediction of tool health. The paper presents an adaptive approach using neural networks for background noise filtration in acoustic signal for a turning process. Acoustic signal of a turning process is mixed with background noise from four different machines and introduced at different RPMs and feed-rate at a constant depth of cut. A comparison of Backpropagation neural network (BPNN), Self-organizing map and k-means clustering algorithm for noise filtration is investigated in this paper. In this regard, back-propagation neural network showed better performance with an average accuracy for all the four sources. It shows 100 % accuracy for grinding machine signal, 94.78 % accuracy for background signal from 3-axis milling machine, 45.57 % and 12.69 % for motor and 4-axis milling machine, respectively. Signal reconstruction is then done using Discrete cosine transform (DCT). The proposed technique shows a promising future for noise filtration in airborne acoustic data of a machining process. 
653 |a Comminution 
653 |a Accuracy 
653 |a Grinding mills 
653 |a Artificial neural networks 
653 |a Turning (machining) 
653 |a Back propagation networks 
653 |a Noise 
653 |a Signal reconstruction 
653 |a Noise prediction (aircraft) 
653 |a Tool wear 
653 |a Discrete cosine transform 
653 |a Background noise 
653 |a Acoustic noise 
653 |a Signal processing 
653 |a Neural networks 
653 |a Clustering 
653 |a Noise propagation 
653 |a Milling (machining) 
653 |a Noise reduction 
653 |a Self organizing maps 
653 |a Acoustic emission 
653 |a Acoustics 
653 |a Filtration 
653 |a Downtime 
653 |a Vector quantization 
700 1 |a Kamal, K  |u National University of Sciences and Technology, Islamabad, Pakistan 
700 1 |a Sheikh, Z  |u PAEC, Islamabad, Pakistan 
700 1 |a Mathavan, S  |u Nottingham Trent University, Nottingham, UK 
700 1 |a Ali, U  |u National University of Sciences and Technology, Islamabad, Pakistan 
700 1 |a Hashmi, H  |u National University of Sciences and Technology, Islamabad, Pakistan 
773 0 |t Journal of Mechanical Science and Technology  |g vol. 31, no. 7 (Jul 2017), p. 3171 
786 0 |d ProQuest  |t Advanced Technologies & Aerospace Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/2001518258/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/2001518258/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch