Dynamics of water entry

Shranjeno v:
Bibliografske podrobnosti
izdano v:Journal of Fluid Mechanics vol. 846 (Jul 10, 2018), p. 508-535
Glavni avtor: Vincent, Lionel
Drugi avtorji: Xiao, Tingben, Yohann, Daniel, Jung, Sunghwan, Kanso, Eva
Izdano:
Cambridge University Press
Teme:
Online dostop:Citation/Abstract
Full Text - PDF
Oznake: Označite
Brez oznak, prvi označite!

MARC

LEADER 00000nab a2200000uu 4500
001 2038595275
003 UK-CbPIL
022 |a 0022-1120 
022 |a 1469-7645 
024 7 |a 10.1017/jfm.2018.273  |2 doi 
035 |a 2038595275 
045 0 |b d20180710 
084 |a 79037  |2 nlm 
100 1 |a Vincent, Lionel 
245 1 |a Dynamics of water entry 
260 |b Cambridge University Press  |c Jul 10, 2018 
513 |a Journal Article 
520 3 |a Diving induces large pressure during water entry accompanied by the creation of cavity and water splash ejected from the free water surface. To minimize impact forces, divers streamline their shape at impact. Here, we investigate the impact forces and splash evolution of wedges entering water as a function of the wedge opening angle. A gradual transition from impactful to smooth entry is observed as the wedge angle decreases. After submersion, the wedge experiences significantly smaller drag forces (two-fold smaller) than immersed wedges. Our experimental findings compare favourably with existing force models upon the introduction of empirically based corrections. We experimentally characterize the shapes of the cavity and splash created by the wedge and find that they are independent of the entry velocity at short times, but that the splash exhibits distinct variations in shape at later times. We propose a one-dimensional model of the splash that takes into account gravity, surface tension and aerodynamic forces. The model shows, in conjunction with experimental data, that the splash shape is dominated by the interplay between a destabilizing Venturi-suction force due to air rushing between the splash and the water surface and a stabilizing force due to surface tension. Taken together, these findings could direct future research aimed at understanding and combining the mechanisms underlying all stages of water entry in application to engineering and bio-related problems, including naval engineering, disease spreading or platform diving. 
651 4 |a United States--US 
653 |a Drag 
653 |a Impact loads 
653 |a Diving 
653 |a Surface tension 
653 |a Ejection 
653 |a One dimensional models 
653 |a Gravity 
653 |a Wedges 
653 |a Aerodynamic forces 
653 |a Fluid-structure interaction 
653 |a Shape 
653 |a Corrections 
653 |a Water 
653 |a Naval engineering 
653 |a Streamlines 
653 |a Pressure distribution 
653 |a Forces (mechanics) 
653 |a Stabilizing 
653 |a Dynamics 
653 |a Data processing 
653 |a Tension 
653 |a Velocity 
653 |a Suction 
653 |a Environmental 
653 |a Platform diving 
653 |a Divers 
653 |a Engineering 
653 |a Fluid mechanics 
700 1 |a Xiao, Tingben 
700 1 |a Yohann, Daniel 
700 1 |a Jung, Sunghwan 
700 1 |a Kanso, Eva 
773 0 |t Journal of Fluid Mechanics  |g vol. 846 (Jul 10, 2018), p. 508-535 
786 0 |d ProQuest  |t Science Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/2038595275/abstract/embedded/H09TXR3UUZB2ISDL?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/2038595275/fulltextPDF/embedded/H09TXR3UUZB2ISDL?source=fedsrch