Optimal design for epidemiological studies subject to designed missingness

Guardado en:
Detalles Bibliográficos
Publicado en:Lifetime Data Analysis vol. 13, no. 4 (Dec 2007), p. 583-605
Autor principal: Morara, Michele
Otros Autores: Ryan, Louise, Houseman, Andres, Strauss, Warren
Publicado:
Springer Nature B.V.
Materias:
Acceso en línea:Citation/Abstract
Full Text
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 204474485
003 UK-CbPIL
022 |a 1380-7870 
022 |a 1572-9249 
024 7 |a 10.1007/s10985-007-9068-7  |2 doi 
035 |a 204474485 
045 2 |b d20071201  |b d20071231 
084 |a 18080755 
084 |a 53486  |2 nlm 
100 1 |a Morara, Michele 
245 1 |a Optimal design for epidemiological studies subject to designed missingness 
260 |b Springer Nature B.V.  |c Dec 2007 
513 |a Journal Article 
520 3 |a In large epidemiological studies, budgetary or logistical constraints will typically preclude study investigators from measuring all exposures, covariates and outcomes of interest on all study subjects. We develop a flexible theoretical framework that incorporates a number of familiar designs such as case control and cohort studies, as well as multistage sampling designs. Our framework also allows for designed missingness and includes the option for outcome dependent designs. Our formulation is based on maximum likelihood and generalizes well known results for inference with missing data to the multistage setting. A variety of techniques are applied to streamline the computation of the Hessian matrix for these designs, facilitating the development of an efficient software tool to implement a wide variety of designs. [PUBLICATION ABSTRACT]   In large epidemiological studies, budgetary or logistical constraints will typically preclude study investigators from measuring all exposures, covariates and outcomes of interest on all study subjects. We develop a flexible theoretical framework that incorporates a number of familiar designs such as case control and cohort studies, as well as multistage sampling designs. Our framework also allows for designed missingness and includes the option for outcome dependent designs. Our formulation is based on maximum likelihood and generalizes well known results for inference with missing data to the multistage setting. A variety of techniques are applied to streamline the computation of the Hessian matrix for these designs, facilitating the development of an efficient software tool to implement a wide variety of designs. 
650 2 2 |a Adolescent 
650 2 2 |a Autistic Disorder  |x chemically induced 
650 2 2 |a Autistic Disorder  |x diagnosis 
650 2 2 |a Case-Control Studies 
650 2 2 |a Child 
650 2 2 |a Child, Preschool 
650 1 2 |a Epidemiologic Research Design 
650 2 2 |a Humans 
650 2 2 |a Logistic Models 
650 2 2 |a Longitudinal Studies 
650 2 2 |a Pesticides  |x adverse effects 
650 2 2 |a Software 
653 |a Epidemiology 
653 |a Sampling 
653 |a Optimization 
653 |a Studies 
653 |a Public health 
653 |a Design optimization 
653 |a Power 
653 |a Generalized linear models 
653 |a Missing data 
653 |a Cohort analysis 
700 1 |a Ryan, Louise 
700 1 |a Houseman, Andres 
700 1 |a Strauss, Warren 
773 0 |t Lifetime Data Analysis  |g vol. 13, no. 4 (Dec 2007), p. 583-605 
786 0 |d ProQuest  |t ABI/INFORM Global 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/204474485/abstract/embedded/75I98GEZK8WCJMPQ?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/204474485/fulltext/embedded/75I98GEZK8WCJMPQ?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/204474485/fulltextPDF/embedded/75I98GEZK8WCJMPQ?source=fedsrch