Inference of Quantized Neural Networks on Heterogeneous All-Programmable Devices

में बचाया:
ग्रंथसूची विवरण
में प्रकाशित:arXiv.org (Jun 21, 2018), p. n/a
मुख्य लेखक: Preußer, Thomas B
अन्य लेखक: Gambardella, Giulio, Fraser, Nicholas, Blott, Michaela
प्रकाशित:
Cornell University Library, arXiv.org
विषय:
ऑनलाइन पहुंच:Citation/Abstract
Full text outside of ProQuest
टैग: टैग जोड़ें
कोई टैग नहीं, इस रिकॉर्ड को टैग करने वाले पहले व्यक्ति बनें!

MARC

LEADER 00000nab a2200000uu 4500
001 2073545602
003 UK-CbPIL
022 |a 2331-8422 
024 7 |a 10.23919/DATE.2018.8342121  |2 doi 
035 |a 2073545602 
045 0 |b d20180621 
100 1 |a Preußer, Thomas B 
245 1 |a Inference of Quantized Neural Networks on Heterogeneous All-Programmable Devices 
260 |b Cornell University Library, arXiv.org  |c Jun 21, 2018 
513 |a Working Paper 
520 3 |a Neural networks have established as a generic and powerful means to approach challenging problems such as image classification, object detection or decision making. Their successful employment foots on an enormous demand of compute. The quantization of network parameters and the processed data has proven a valuable measure to reduce the challenges of network inference so effectively that the feasible scope of applications is expanded even into the embedded domain. This paper describes the making of a real-time object detection in a live video stream processed on an embedded all-programmable device. The presented case illustrates how the required processing is tamed and parallelized across both the CPU cores and the programmable logic and how the most suitable resources and powerful extensions, such as NEON vectorization, are leveraged for the individual processing steps. The crafted result is an extended Darknet framework implementing a fully integrated, end-to-end solution from video capture over object annotation to video output applying neural network inference at different quantization levels running at 16~frames per second on an embedded Zynq UltraScale+ (XCZU3EG) platform. 
653 |a Field programmable gate arrays 
653 |a Neural networks 
653 |a Parallel processing 
653 |a Electronic devices 
653 |a Image detection 
653 |a Frames per second 
653 |a Inference 
653 |a Image classification 
653 |a Video data 
653 |a Vector processing (computers) 
653 |a Programmable logic devices 
653 |a Annotations 
653 |a Neon 
653 |a Object recognition 
653 |a Measurement 
653 |a Decision making 
653 |a Central processing units--CPUs 
700 1 |a Gambardella, Giulio 
700 1 |a Fraser, Nicholas 
700 1 |a Blott, Michaela 
773 0 |t arXiv.org  |g (Jun 21, 2018), p. n/a 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/2073545602/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full text outside of ProQuest  |u http://arxiv.org/abs/1806.08085