A Time-Vertex Signal Processing Framework

Guardat en:
Dades bibliogràfiques
Publicat a:arXiv.org (May 5, 2017), p. n/a
Autor principal: Grassi, Francesco
Altres autors: Loukas, Andreas, Perraudin, Nathanaël, Ricaud, Benjamin
Publicat:
Cornell University Library, arXiv.org
Matèries:
Accés en línia:Citation/Abstract
Full text outside of ProQuest
Etiquetes: Afegir etiqueta
Sense etiquetes, Sigues el primer a etiquetar aquest registre!

MARC

LEADER 00000nab a2200000uu 4500
001 2074264470
003 UK-CbPIL
022 |a 2331-8422 
035 |a 2074264470 
045 0 |b d20170505 
100 1 |a Grassi, Francesco 
245 1 |a A Time-Vertex Signal Processing Framework 
260 |b Cornell University Library, arXiv.org  |c May 5, 2017 
513 |a Working Paper 
520 3 |a An emerging way to deal with high-dimensional non-euclidean data is to assume that the underlying structure can be captured by a graph. Recently, ideas have begun to emerge related to the analysis of time-varying graph signals. This work aims to elevate the notion of joint harmonic analysis to a full-fledged framework denoted as Time-Vertex Signal Processing, that links together the time-domain signal processing techniques with the new tools of graph signal processing. This entails three main contributions: (a) We provide a formal motivation for harmonic time-vertex analysis as an analysis tool for the state evolution of simple Partial Differential Equations on graphs. (b) We improve the accuracy of joint filtering operators by up-to two orders of magnitude. (c) Using our joint filters, we construct time-vertex dictionaries analyzing the different scales and the local time-frequency content of a signal. The utility of our tools is illustrated in numerous applications and datasets, such as dynamic mesh denoising and classification, still-video inpainting, and source localization in seismic events. Our results suggest that joint analysis of time-vertex signals can bring benefits to regression and learning. 
653 |a Partial differential equations 
653 |a Digital signal processors 
653 |a Signal processing 
653 |a Time domain analysis 
653 |a Video data 
653 |a Regression analysis 
653 |a Noise reduction 
653 |a Harmonic analysis 
653 |a Fourier analysis 
653 |a Euclidean geometry 
653 |a Seismic activity 
700 1 |a Loukas, Andreas 
700 1 |a Perraudin, Nathanaël 
700 1 |a Ricaud, Benjamin 
773 0 |t arXiv.org  |g (May 5, 2017), p. n/a 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/2074264470/abstract/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full text outside of ProQuest  |u http://arxiv.org/abs/1705.02307