Multi-Sensor Data Pattern Recognition for Multi-Target Localization: A Machine Learning Approach

Сохранить в:
Библиографические подробности
Опубликовано в::arXiv.org (Feb 28, 2017), p. n/a
Главный автор: Kasthurirengan Suresh
Другие авторы: Silva, Samuel, Votion, Johnathan, Cao, Yongcan
Опубликовано:
Cornell University Library, arXiv.org
Предметы:
Online-ссылка:Citation/Abstract
Full text outside of ProQuest
Метки: Добавить метку
Нет меток, Требуется 1-ая метка записи!

MARC

LEADER 00000nab a2200000uu 4500
001 2074475871
003 UK-CbPIL
022 |a 2331-8422 
035 |a 2074475871 
045 0 |b d20170228 
100 1 |a Kasthurirengan Suresh 
245 1 |a Multi-Sensor Data Pattern Recognition for Multi-Target Localization: A Machine Learning Approach 
260 |b Cornell University Library, arXiv.org  |c Feb 28, 2017 
513 |a Working Paper 
520 3 |a Data-target pairing is an important step towards multi-target localization for the intelligent operation of unmanned systems. Target localization plays a crucial role in numerous applications, such as search, and rescue missions, traffic management and surveillance. The objective of this paper is to present an innovative target location learning approach, where numerous machine learning approaches, including K-means clustering and supported vector machines (SVM), are used to learn the data pattern across a list of spatially distributed sensors. To enable the accurate data association from different sensors for accurate target localization, appropriate data pre-processing is essential, which is then followed by the application of different machine learning algorithms to appropriately group data from different sensors for the accurate localization of multiple targets. Through simulation examples, the performance of these machine learning algorithms is quantified and compared. 
653 |a Algorithms 
653 |a Localization 
653 |a Artificial intelligence 
653 |a Sensors 
653 |a Traffic surveillance 
653 |a Cluster analysis 
653 |a Clustering 
653 |a Traffic management 
653 |a Target recognition 
653 |a Multiple target tracking 
653 |a Machine learning 
653 |a Pattern recognition 
653 |a Computer simulation 
653 |a Vector quantization 
653 |a Search and rescue missions 
700 1 |a Silva, Samuel 
700 1 |a Votion, Johnathan 
700 1 |a Cao, Yongcan 
773 0 |t arXiv.org  |g (Feb 28, 2017), p. n/a 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/2074475871/abstract/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full text outside of ProQuest  |u http://arxiv.org/abs/1703.00084