Geological realism in hydrogeological and geophysical inverse modeling: a review

Guardado en:
Detalles Bibliográficos
Publicado en:arXiv.org (Jan 6, 2017), p. n/a
Autor principal: Linde, N
Otros Autores: Renard, P, Mukerji, T, Caers, J
Publicado:
Cornell University Library, arXiv.org
Materias:
Acceso en línea:Citation/Abstract
Full text outside of ProQuest
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 2074599243
003 UK-CbPIL
022 |a 2331-8422 
024 7 |a 10.1016/j.advwatres.2015.09.019  |2 doi 
035 |a 2074599243 
045 0 |b d20170106 
100 1 |a Linde, N 
245 1 |a Geological realism in hydrogeological and geophysical inverse modeling: a review 
260 |b Cornell University Library, arXiv.org  |c Jan 6, 2017 
513 |a Working Paper 
520 3 |a Scientific curiosity, exploration of georesources and environmental concerns are pushing the geoscientific research community toward subsurface investigations of ever-increasing complexity. This review explores various approaches to formulate and solve inverse problems in ways that effectively integrate geological concepts with geophysical and hydrogeological data. Modern geostatistical simulation algorithms can produce multiple subsurface realizations that are in agreement with conceptual geological models and statistical rock physics can be used to map these realizations into physical properties that are sensed by the geophysical or hydrogeological data. The inverse problem consists of finding one or an ensemble of such subsurface realizations that are in agreement with the data. The most general inversion frameworks are presently often computationally intractable when applied to large-scale problems and it is necessary to better understand the implications of simplifying (1) the conceptual geological model (e.g., using model compression); (2) the physical forward problem (e.g., using proxy models); and (3) the algorithm used to solve the inverse problem (e.g., Markov chain Monte Carlo or local optimization methods) to reach practical and robust solutions given today's computer resources and knowledge. We also highlight the need to not only use geophysical and hydrogeological data for parameter estimation purposes, but also to use them to falsify or corroborate alternative geological scenarios. 
653 |a Monte Carlo simulation 
653 |a Inverse problems 
653 |a Markov analysis 
653 |a Geology 
653 |a Geostatistics 
653 |a Geological mapping 
653 |a Markov chains 
653 |a Hydrogeology 
653 |a Parameter estimation 
653 |a Geophysics 
653 |a Algorithms 
653 |a Physical properties 
653 |a Local optimization 
653 |a Forward problem 
653 |a Computer simulation 
653 |a Subsurface investigations 
700 1 |a Renard, P 
700 1 |a Mukerji, T 
700 1 |a Caers, J 
773 0 |t arXiv.org  |g (Jan 6, 2017), p. n/a 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/2074599243/abstract/embedded/75I98GEZK8WCJMPQ?source=fedsrch 
856 4 0 |3 Full text outside of ProQuest  |u http://arxiv.org/abs/1701.01602