Modeling non-stationarities in high-frequency financial time series

Guardado en:
Detalles Bibliográficos
Publicado en:arXiv.org (Feb 27, 2017), p. n/a
Autor principal: Ponta, Linda
Otros Autores: Trinh, Mailan, Raberto, Marco, Scalas, Enrico, Cincotti, Silvano
Publicado:
Cornell University Library, arXiv.org
Materias:
Acceso en línea:Citation/Abstract
Full text outside of ProQuest
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 2075499940
003 UK-CbPIL
022 |a 2331-8422 
035 |a 2075499940 
045 0 |b d20170227 
100 1 |a Ponta, Linda 
245 1 |a Modeling non-stationarities in high-frequency financial time series 
260 |b Cornell University Library, arXiv.org  |c Feb 27, 2017 
513 |a Working Paper 
520 3 |a We study tick-by-tick financial returns belonging to the FTSE MIB index of the Italian Stock Exchange (Borsa Italiana). We can confirm previously detected non-stationarities. However, scaling properties reported in the previous literature for other high-frequency financial data are only approximately valid. As a consequence of the empirical analyses, we propose a simple method for describing non-stationary returns, based on a non-homogeneous normal compound Poisson process. We test this model against the empirical findings and it turns out that the model can approximately reproduce several stylized facts of high-frequency financial time series. Moreover, using Monte Carlo simulations, we analyze order selection for this model class using three information criteria: Akaike's information criterion (AIC), the Bayesian information criterion (BIC) and the Hannan-Quinn information criterion (HQ). For comparison, we also perform a similar Monte Carlo experiment for the ACD (autoregressive conditional duration) model. Our results show that the information criteria work best for small parameter numbers for the compound Poisson type models, whereas for the ACD model the model selection procedure does not work well in certain cases. 
653 |a Monte Carlo simulation 
653 |a Time series 
653 |a Autoregressive models 
653 |a Empirical analysis 
653 |a Bayesian analysis 
653 |a Stock exchanges 
653 |a Model testing 
653 |a Poisson density functions 
653 |a Computer simulation 
653 |a Criteria 
700 1 |a Trinh, Mailan 
700 1 |a Raberto, Marco 
700 1 |a Scalas, Enrico 
700 1 |a Cincotti, Silvano 
773 0 |t arXiv.org  |g (Feb 27, 2017), p. n/a 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/2075499940/abstract/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full text outside of ProQuest  |u http://arxiv.org/abs/1212.0479