A Multi-Layer K-means Approach for Multi-Sensor Data Pattern Recognition in Multi-Target Localization

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org (May 30, 2017), p. n/a
1. Verfasser: Silva, Samuel
Weitere Verfasser: Rengan Suresh, Feng, Tao, Votion, Johnathan, Cao, Yongcan
Veröffentlicht:
Cornell University Library, arXiv.org
Schlagworte:
Online-Zugang:Citation/Abstract
Full text outside of ProQuest
Tags: Tag hinzufügen
Keine Tags, Fügen Sie das erste Tag hinzu!

MARC

LEADER 00000nab a2200000uu 4500
001 2075726381
003 UK-CbPIL
022 |a 2331-8422 
035 |a 2075726381 
045 0 |b d20170530 
100 1 |a Silva, Samuel 
245 1 |a A Multi-Layer K-means Approach for Multi-Sensor Data Pattern Recognition in Multi-Target Localization 
260 |b Cornell University Library, arXiv.org  |c May 30, 2017 
513 |a Working Paper 
520 3 |a Data-target association is an important step in multi-target localization for the intelligent operation of un- manned systems in numerous applications such as search and rescue, traffic management and surveillance. The objective of this paper is to present an innovative data association learning approach named multi-layer K-means (MLKM) based on leveraging the advantages of some existing machine learning approaches, including K-means, K-means++, and deep neural networks. To enable the accurate data association from different sensors for efficient target localization, MLKM relies on the clustering capabilities of K-means++ structured in a multi-layer framework with the error correction feature that is motivated by the backpropogation that is well-known in deep learning research. To show the effectiveness of the MLKM method, numerous simulation examples are conducted to compare its performance with K-means, K-means++, and deep neural networks. 
653 |a Localization 
653 |a Neural networks 
653 |a Traffic surveillance 
653 |a Multilayers 
653 |a Error correction 
653 |a Clustering 
653 |a Traffic management 
653 |a Target recognition 
653 |a Multiple target tracking 
653 |a Machine learning 
653 |a Pattern recognition 
653 |a Computer simulation 
653 |a Search and rescue missions 
700 1 |a Rengan Suresh 
700 1 |a Feng, Tao 
700 1 |a Votion, Johnathan 
700 1 |a Cao, Yongcan 
773 0 |t arXiv.org  |g (May 30, 2017), p. n/a 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/2075726381/abstract/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full text outside of ProQuest  |u http://arxiv.org/abs/1705.10757