Corral Framework: Trustworthy and Fully Functional Data Intensive Parallel Astronomical Pipelines

Kaydedildi:
Detaylı Bibliyografya
Yayımlandı:arXiv.org (Aug 7, 2017), p. n/a
Yazar: Cabral, Juan B
Diğer Yazarlar: Sánchez, Bruno, Beroiz, Martín, Domínguez, Mariano, Lares, Marcelo, Gurovich, Sebastián, Granitto, Pablo
Baskı/Yayın Bilgisi:
Cornell University Library, arXiv.org
Konular:
Online Erişim:Citation/Abstract
Full text outside of ProQuest
Etiketler: Etiketle
Etiket eklenmemiş, İlk siz ekleyin!

MARC

LEADER 00000nab a2200000uu 4500
001 2076045078
003 UK-CbPIL
022 |a 2331-8422 
024 7 |a 10.1016/j.ascom.2017.07.003  |2 doi 
035 |a 2076045078 
045 0 |b d20170807 
100 1 |a Cabral, Juan B 
245 1 |a Corral Framework: Trustworthy and Fully Functional Data Intensive Parallel Astronomical Pipelines 
260 |b Cornell University Library, arXiv.org  |c Aug 7, 2017 
513 |a Working Paper 
520 3 |a Data processing pipelines represent an important slice of the astronomical software library that include chains of processes that transform raw data into valuable information via data reduction and analysis. In this work we present Corral, a Python framework for astronomical pipeline generation. Corral features a Model-View-Controller design pattern on top of an SQL Relational Database capable of handling: custom data models; processing stages; and communication alerts, and also provides automatic quality and structural metrics based on unit testing. The Model-View-Controller provides concept separation between the user logic and the data models, delivering at the same time multi-processing and distributed computing capabilities. Corral represents an improvement over commonly found data processing pipelines in Astronomy since the design pattern eases the programmer from dealing with processing flow and parallelization issues, allowing them to focus on the specific algorithms needed for the successive data transformations and at the same time provides a broad measure of quality over the created pipeline. Corral and working examples of pipelines that use it are available to the community at https://github.com/toros-astro. 
653 |a Data processing 
653 |a Data models 
653 |a Pipelines 
653 |a Parallel processing 
653 |a Astronomy 
653 |a Control systems design 
653 |a Model testing 
653 |a Pipelining (computers) 
653 |a Data reduction 
653 |a Algorithms 
653 |a Trustworthiness 
653 |a Controllers 
653 |a Relational data bases 
653 |a Computing time 
653 |a Computer networks 
653 |a Distributed processing 
653 |a Query languages 
700 1 |a Sánchez, Bruno 
700 1 |a Beroiz, Martín 
700 1 |a Domínguez, Mariano 
700 1 |a Lares, Marcelo 
700 1 |a Gurovich, Sebastián 
700 1 |a Granitto, Pablo 
773 0 |t arXiv.org  |g (Aug 7, 2017), p. n/a 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/2076045078/abstract/embedded/ZKJTFFSVAI7CB62C?source=fedsrch 
856 4 0 |3 Full text outside of ProQuest  |u http://arxiv.org/abs/1701.05566