Semantics, Specification Logic, and Hoare Logic of Exact Real Computation

Guardado en:
Detalles Bibliográficos
Publicado en:arXiv.org (Jun 21, 2024), p. n/a
Autor principal: Park, Sewon
Otros Autores: Brauße, Franz, Collins, Pieter, Kim, SunYoung, Konečný, Michal, Lee, Gyesik, Müller, Norbert, Neumann, Eike, Preining, Norbert, Ziegler, Martin
Publicado:
Cornell University Library, arXiv.org
Materias:
Acceso en línea:Citation/Abstract
Full text outside of ProQuest
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 2076424577
003 UK-CbPIL
022 |a 2331-8422 
024 7 |a 10.46298/lmcs-20(2:17)2024  |2 doi 
035 |a 2076424577 
045 0 |b d20240621 
100 1 |a Park, Sewon 
245 1 |a Semantics, Specification Logic, and Hoare Logic of Exact Real Computation 
260 |b Cornell University Library, arXiv.org  |c Jun 21, 2024 
513 |a Working Paper 
520 3 |a We propose a simple imperative programming language, ERC, that features arbitrary real numbers as primitive data type, exactly. Equipped with a denotational semantics, ERC provides a formal programming language-theoretic foundation to the algorithmic processing of real numbers. In order to capture multi-valuedness, which is well-known to be essential to real number computation, we use a Plotkin powerdomain and make our programming language semantics computable and complete: all and only real functions computable in computable analysis can be realized in ERC. The base programming language supports real arithmetic as well as implicit limits; expansions support additional primitive operations (such as a user-defined exponential function). By restricting integers to Presburger arithmetic and real coercion to the `precision' embedding \(\mathbb{Z}\ni p\mapsto 2^p\in\mathbb{R}\), we arrive at a first-order theory which we prove to be decidable and model-complete. Based on said logic as specification language for preconditions and postconditions, we extend Hoare logic to a sound (w.r.t. the denotational semantics) and expressive system for deriving correct total correctness specifications. Various examples demonstrate the practicality and convenience of our language and the extended Hoare logic. 
653 |a Linear equations 
653 |a Computation 
653 |a Semantics 
653 |a Mathematical models 
653 |a Program verification (computers) 
653 |a Floating structures 
653 |a Integers 
653 |a Rounding 
653 |a Imperative programming 
653 |a Floating point arithmetic 
653 |a Programming languages 
700 1 |a Brauße, Franz 
700 1 |a Collins, Pieter 
700 1 |a Kim, SunYoung 
700 1 |a Konečný, Michal 
700 1 |a Lee, Gyesik 
700 1 |a Müller, Norbert 
700 1 |a Neumann, Eike 
700 1 |a Preining, Norbert 
700 1 |a Ziegler, Martin 
773 0 |t arXiv.org  |g (Jun 21, 2024), p. n/a 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/2076424577/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full text outside of ProQuest  |u http://arxiv.org/abs/1608.05787