Modal decomposition of fluid-structure interaction with application to flag flapping

Salvato in:
Dettagli Bibliografici
Pubblicato in:arXiv.org (Nov 8, 2017), p. n/a
Autore principale: Goza, Andres
Altri autori: Colonius, Tim
Pubblicazione:
Cornell University Library, arXiv.org
Soggetti:
Accesso online:Citation/Abstract
Full text outside of ProQuest
Tags: Aggiungi Tag
Nessun Tag, puoi essere il primo ad aggiungerne!!

MARC

LEADER 00000nab a2200000uu 4500
001 2076939051
003 UK-CbPIL
022 |a 2331-8422 
024 7 |a 10.1016/j.jfluidstructs.2018.06.014  |2 doi 
035 |a 2076939051 
045 0 |b d20171108 
100 1 |a Goza, Andres 
245 1 |a Modal decomposition of fluid-structure interaction with application to flag flapping 
260 |b Cornell University Library, arXiv.org  |c Nov 8, 2017 
513 |a Working Paper 
520 3 |a Modal decompositions such as proper orthogonal decomposition (POD), dynamic mode decomposition (DMD) and their variants are regularly used to educe physical mechanisms of nonlinear flow phenomena that cannot be easily understood through direct inspection. In fluid-structure interaction (FSI) systems, fluid motion is coupled to vibration and/or deformation of an immersed structure. Despite this coupling, data analysis is often performed using only fluid or structure variables, rather than incorporating both. This approach does not provide information about the manner in which fluid and structure modes are correlated. We present a framework for performing POD and DMD where the fluid and structure are treated together. As part of this framework, we introduce a physically meaningful norm for FSI systems. We first use this combined fluid-structure formulation to identify correlated flow features and structural motions in limit-cycle flag flapping. We then investigate the transition from limit-cycle flapping to chaotic flapping, which can be initiated by increasing the flag mass. Our modal decomposition reveals that at the onset of chaos, the dominant flapping motion increases in amplitude and leads to a bluff-body wake instability. This new bluff-body mode interacts triadically with the dominant flapping motion to produce flapping at the non-integer harmonic frequencies previously reported by Connell & Yue (2007). While our formulation is presented for POD and DMD, there are natural extensions to other data-analysis techniques. 
653 |a Decomposition 
653 |a Fluid-structure interaction 
653 |a Data analysis 
653 |a Flapping 
653 |a Data processing 
653 |a Inspection 
653 |a Deformation mechanisms 
653 |a Proper Orthogonal Decomposition 
653 |a Motion stability 
700 1 |a Colonius, Tim 
773 0 |t arXiv.org  |g (Nov 8, 2017), p. n/a 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/2076939051/abstract/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full text outside of ProQuest  |u http://arxiv.org/abs/1711.03040